
NASA CR-174975 Report No. MDC J3789

# CALCULATION OF COMPRESSIBLE FLOW ABOUT THREE-DIMENSIONAL INLETS WITH AUXILIARY INLETS, SLATS AND VANES BY MEANS OF A PANEL METHOD

ίīγ

J. L. Hess, D. M. Friedman and R. W. Clark Douglas Aircraft Company, Long Beach, California



June 1985

This work was completed under NASA Contract NAS3-22250 for



National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

# CALCULATION OF COMPRESSIBLE FLOW ABOUT THREE-DIMENSIONAL INLETS WITH AUXILIARY INLETS, SLATS AND VANES BY MEANS OF A PANEL METHOD

Revision date

Revision letter

issue date

June 1985

Contract number NAS3-22250

Prepared by: J. L. Hess, D. M. Friedman and R. W. Ciark

Approved by .:

T. Cebeci Staff Director

Research & Technology

Aircraft Configuration & Performance

unce Cebein

DOUGLAS AIRCRAFT COMPANY

MCDONNELL DOUGL

CORPORATION

#### **ABSTRACT**

An efficient and user-oriented method has been construct if for calculating flow in and about complex inlet configurations. Efficiency is attained by: the use of a panel method, a technique of superposition for obtaining solutions at any inlet operating condition, and employment of an advanced matrix-iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that, taken together, yield a more complete comprehension of the flowfield than had been possible previously. Examples of these features are presented for some complicated configurations.

# TABLE OF CONTENTS

|     | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| 1.0 | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3     |
| 2.0 | The Higher-Order Panel Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3     |
|     | 2.1 General Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5     |
|     | 2.2 Consistency Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6     |
|     | 2.3 Development of the Panels from Input Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8     |
|     | 2.4 Velocities Induced by the Source Distribution on the Panels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | 2.5 The Source Derivative Terms. Assembly of the Matrix of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9     |
|     | Influence Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|     | 2.5.1 The Numerical Differentiation Procedure. Geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9     |
|     | Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11    |
|     | 2.5.2 Logic of the Assembly Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13    |
|     | 2.6 Vorticity Influences of a Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13    |
|     | 2.6.1 Panel Vorticity and the Underlying Dipole Distribution .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17    |
|     | 2.6.2 Edge Vortices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17    |
|     | 2.6.3 The Trailing Vortex Wake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20    |
|     | 2.6.4 Two Special Situations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22    |
|     | 2.6.5 Assembly of the Vorticity Ons. Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25    |
|     | 2.7 The Kutta Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26    |
|     | 2.8 The Iterative Matrix Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28    |
|     | 2.8.1 Block Gauss-Siedel Iterative Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30    |
|     | 2.8.2 Convergence Acceleration Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34    |
| 3.  | O The Inlet Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35    |
|     | 3.1 General Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35    |
|     | 3.2 The Fundamental Flow Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37    |
|     | 3.3 The Combination Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39    |
| 4.  | .0 Calculated Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33    |
| 5.  | .0 Input Instructions for the Higher-Order Potential-Flow Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42    |
|     | (DF12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56    |
| 6   | .0 References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     | Appendices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | to the Potential Induced by a Curved Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| A   | Panel at a Point in Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . A-1 |
| В   | Congration of Panel Geometric Quantities by Means of Bi-Cubic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _     |
| В   | Splines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . B-1 |
| _   | the second secon | . C-1 |
| 0   | The state of the s | . D-1 |
| I   | D Near-Field Source Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |

| Ε | Intermediate-Field Source Formulas                                                |
|---|-----------------------------------------------------------------------------------|
| F | Far-Field Source Formulas                                                         |
| G | Some Special Near-Field Formulas                                                  |
| H | Calculation of Vorticity Induced Velocities in Terms of Source Induced Velocities |
| I | Near-Field Formulas for the Effect of a Line-Vortex Along a                       |
|   | Streamwise Edge of a Panel                                                        |
| J | Far-Field Line-Vortex Formulas                                                    |
| K | Parabolic Chordwise Vorticity                                                     |
| L | B Derivatives at Section Edges                                                    |
| M | Iterative Matrix Solution                                                         |
| N | The Compressibility Correction                                                    |
| 0 | Options of the Combination Program                                                |
| P | Organization of the Input Data                                                    |

#### PRINCIPAL NOTATION

| A | Matrix of induced normal | velocities at the | control points. | Also |
|---|--------------------------|-------------------|-----------------|------|
|   | flat panel area.         |                   | •               |      |

- b Subscripts 32, 41. Intercept on n axis of panel side.
- Dipole derivative along an N-line. Subscripts F and S denote values on first and second N-lines of a panel, respectively. Subscript K denotes value associated with K-th lifting strip (Fig. 1).
- Geometric constant for a panel designed to minimize dipole di ontinuity along a lifting strip.
- $C_K^{(x)}, C_K^{(y)}$  Geometric constants expressing source derivative on a panel in terms of values of source density on surrounding panels.
- d Length of a side of a panel; used with subscripts to denote a particular side.
- h Geometric constant denoting arc length along an N-line from trailing edge to n-axis of a panel. Subscripts F and S denote first and second N-lines, respectively.
- i,j Integer subscripts denoting panel number.
- i,j,k Unit vectors along axis of Cartesian coordinate system. Subscript e denotes panel coordinate system.
- L Mumber of lifting strips.
- L(total) Total arc length of an N-line from trailing edge to leading edge and back again.
- m Subscripts 32, 41. Slope of a panel side.
- $n_{\xi}, n_{\eta}, n_{\zeta}$  Components of  $\vec{n}$  in panel coordinates.
- n Unit normal vector to a panel.
- N Number of panels.
- N-line Curve along which input points are distributed. On lifting portions it defines a wing section (Fig. 1).
- P,Q,R Derivatives of panel shape at origin of panel coordinates
- r Magnitude of  $\vec{r}$
- r Vector between the two points in space.
- S Surface area of curved panel. Used with subscripts 32, 41 denotes cosine of slope angle of a panel side.

- t Maximum dimension of a panel.
- Nonorthogonal coordinates used in parametric cubic surface representation.
- V Velocity. Used with various subscripts and superscripts.
- $v_{ij}$  Velocity at i-th control point due to unit source density on j-th panel.
- V<sub>i</sub> Final combined velocity at i-th control point.
- $\vec{v}_i^{(k)}$  Velocity at i-th control point due to unit dipcle derivative on K-th lifting strip.
- W Width of a panel or lifting strip.
- x,y,z Cartesian coordinates.
- $\xi,\eta,\zeta$  Coordinates of a point of a panel in its own coordinate system.
- Underlying dipole distribution on a panel that defines the panel vorticity distribution. Subscripts x and y denote derivatives at the origin of panel coordinates.
- Source density on a panel. Subscripts x and y denote derivatives at the origin of panel coordinates. Integer subscripts denote value at origin of some particular panel.
- $\overset{
  ightarrow}{\omega}$  Vector vorticity strength on a panel.

#### 1.0 INTRODUCTION

The present work consists of the construction of a computer program for analyzing flow in and about very complicated three-dimensional inlet configurations. The basic calculational technique is a panel method, whose choice is dictated by considerations of numerical efficiency and geometric generality. Such a method can calculate flow about virtually any passive configuration in a routine fashion. An inlet, however, is active in the sense that it contains complicated internal machinery that controls the amount of fluid that enters. For the present purpose, it is not necessary or even desirable to analyze this machinery in detail. Instead, its effect is lumped into a single parameter, namely the mass flow through the inlet. This situation is seen most clearly in the static case where the inlet is at rest in an otherwise unlisturbed fluid. Here the only fluid motion is that due to ingestion of fluid by the inlet. The difference between a method applicable to inlets and a method for passive bodies is that the former must contain a calculational device for controlling mass flow through the inlet. As will be seen, this requirement is equivalent to a calculational device for generating a static solution.

Reference I describes a method for calculating flow about simple three-dimensional inlets by means of a first-order panel method. Reference 2 presents a procedure applicable to inlets having auxiliary inlets which uses a higher-order panel method. The present program generalizes this last to the case of inlets having leading-edge slats. Thus this method must account for lifting effects, while that of Ref. 2 did not. This represents a considerable difference. Not only must the code contain formulas giving the effects of bound and trailing vorticity, but the iterative matrix solution must be altered radically to include the nonlinear Kutta condition. Moreover, the user must now bear the responsibility of specifying the location of the trailing vortex wake. As far as the code is concerned, the designation "leading-edge slat" may be interpreted very generally as a lifting portion of the configuration. Thus the program can consider an inlet mounted on a lifting wing-pylon configuration.

It should be pointed out that the rather elaborate scheme outlined here is made necessary by the requirement to simultaneously analyze flow outside and inside

1

3495H

the inlet. If only the exterior flow were of interest, the inlet entrance could be represented by panels on which an inflow velocity distribution is specified.

This inlet program is thus the latest in a series of panel-method programs, each of which depends on the previous ones. Two previous inlet programs, Refs. 1 and 2, have already been mentioned. The present code is based on the higher-order lifting panel method of Ref. 3, which in turn is based on the higher-order nonlifting panel method of Ref. 4, and both are extensions of the first-order lifting panel method of Ref. 5. Recent documents, notably Refs. 2 and 3, refer liberally to the earlier documents. Thus no one document contains all the necessary formulas and logic of the ensemble of programs that were developed up to this time. It was decided to remedy this situation by making the present report complete. All the panel-method formulas and inlet procedures that pertain to the present code are contained herein. The resulting reference manual is somewhat lengthy, but it is complete.

# 2.0 THE HIGHER-ORDER PANEL METHOD

### 2.1 General Description

The panel method here is a higher-order source method. In a source method the unknown value of source density on each panel is adjusted to satisfy the normal-velocity boundary condition at the panel control points, while dipole and/or vorticity is treated as an auxiliary singularity that is used to produce the lifting effects. In contrast to a first-order panel method (Ref. 5), which uses a constant source density on flat panels, the higher-order method (Ref. 3) accounts for source-derivative and surface-curvature effects. As examples will show, inclusion of these effects can be quite important for internal flows. The panel method of Ref. 3 is the only current method that accounts for local surface curvature despite analysis that indicates that a method is not truly higher order if these effects are ignored (see Section 2.2 below).

A three-dimensional lifting flow is characterized by the presence of a trailing vortex sheet that issues from the trailing edge of the lifting portion of the configuration, e.g. a wing or slat (see Figure 1). If more than one lifting device is present, such a sheet issues from every trailing edge. The location of the trailing vortex sheet is not known a priori. In the present panel method the location is simply input by the user based on his experience and physical intuition. In the case of a wing-fuselage, this issue is unimportant because the wake is relatively far from all parts of the wing and is weak near the body. In the inlet case, however, the wake of the slat is ingested and probably lies close to the inner surface of the inlet. The wake location could be important, and its estimation might be somewhat difficult, particularly at angle of attack.

A key issue in any lifting procedure is the method of applying the Kutta condition. Oddly most panel-method publications virtually ignore this question, presumably because the authors consider it unimportant. In fact, the Kutta condition is of first importance, because it determines the circulation distribution that drives the whole lifting flow. Classically, the Kutta condition is stated as the avoidance of an infinite velocity at the trailing edge. Clearly such a condition cannot be enforced numerically, and some other

criterion, which is a consequence of the Kutta condition, must be invoked. Physically, it is absolutely necessary that upper- and lower-surface pressures on the wing must approach a common value at the trailing edge. This is the form of the Kutta condition employed in the present panel method. Oddly no other panel method uses the equal-pressure Kutta condition. Instead, other derivative conditions are used. The reason for this is probably that the equal-pressure condition is nonlinear, while the alternate conditions are linear, which simplifies the numerical procedure. The price of linearity is high, however, because calculated results can be seriously in error. Figure 2 shows calculated results from Ref. 6. It can be seen that only the present panel method gives equal upper- and lower-surface trailing-edge pressures for this case. The other methods give a pressure mismatch of up to half of free-stream dynamic pressure.

Another important feature of the present panel method is its use of an iterative matrix solution. An inlet having a centerbody, an auxiliary inlet, and one or more slats is a very complicated configuration, which if mounted on a wing-pylon becomes much more complicated. Thus the cases to which the present method will be applied tend to have large panel numbers. For such cases an iterative solution of the linear equations that express the boundary condition is an order of magnitude faster computationally than a direct elimination solution. As is well known, the computational effort for an iterative solution is proportional to the square of the number of equations, i.e. to the panel number, while that of the direct solution is proportional to the cube. Thus the advantage of the former becomes greater as the panel number increases and as the computation time becomes a more important factor. For the iterative solution to realize this advantage, it must converge reliably in a relatively small number of iterations, say 10-20. As reported in Ref. 2, an accelerated block Gauss-Siedel achieved this efficiency in the nonlifting panel method. The addition of lift produces a major complication in that the values of bound vorticity must be included among the unknowns and the set of equations must contain those expressing the Kutta conditions at various span locations along the trailing edges. As mentioned above, these last are nonlinear. The standard "Newton-type" method for solving sets of nonlinear equations consists of successive linearizations followed by iteration. That is, in each iteration a set of linear equations is solved, but the coefficient matrix changes with

3495H 4

each iteration. This alternative type of iteration was incorporated into the basic block Gauss-Siedel scheme, and after a restructuring of the acceleration procedure, a reliable method was obtained. The number of iterations required for convergence is increased 30% compared to the nonlifting case.

### 2.2 Consistency Analysis

One of the distinguishing features of panel methods is that the velocity due to a panel singularity is computed analytically, as contrasted with other so-called "boundary-element" methods where numerical quadratures are employed. This feature is rendered necessary by the requirement faced by a practical panel method that panel dimensions are often larger than characteristic physical dimensions of the boundary. For example, in the midchord mid-semi-span region of a wing the spamwise dimension of panels is normally an order of magnitude larger than the local wing thickness (Fig. 1). The integrals over a panel giving the potentials and/or velocities due to various singularity distributions can be integrated analytically only if the panel is flat. Other panel methods have assumed flat panels from the beginning and then hypothesized singularity distributions that are two-variable polynomials of various degrees, usually ranging from constant to quadratic. Investigators who use the polynomials of higher degree tend to label their methods "higher-order" and thus to imply that the increase of accuracy with panel number of such a method is more rapid than that of a "lower order" method. Such as assertion has been proven false by direct comparisons of calculated results (Refs. 6 and 7). The reason is simply that successive refinement of an integrand (the singularity distribution) without simultaneous refinement of the integration region (the panel geometry) cannot lead to improved results, because the factors neglected are more important than the additional factors included.

An alternative approach is to expand the effect of a general panel about its tangent panel. All relevant quantities can be expanded in Taylor's series about the tangency point and the integral expressed as a sequence of terms each of "higher order" in panel dimension than the preceding terms. Since all integrals are over the flat tangent panel, they all can be evaluated analytically. But the expanded terms contain derivatives of both the singularity strength and the body shape. The analysis is done in detail in Appendix A for

5

the case of source singularity. It is shown there that a term of a given order contains derivatives of the surface shape that are one degree higher than the highest singularity derivative. Thus consistent combinations are: flat-panel/constant source, paraboloidal panel/linear source, cubic panel/quadratic source, etc. The same is true for vorticity, which reflects the fact that vorticity effects can be expressed in terms of source effects (see Appendix H). Dipole effects have a more complicated expansion due to the fact that a dipole distribution on a panel is equivalent to a vorticity distribution equal to its gradient (and thus a polynomial one degree lower) plus a concentrated vortex filament around the edges of the panel. The present approach uses panel vorticity and adds the appropriate edge vortices.

# 2.3 Development of the Panels from Input Points

As in all panel methods, the body surface and wake are input to the computer by specifying the coordinates of a number of points on the surface. These are associated in groups of four to form the quadrilateral surface panels (Fig. 1). This may be done in a variety of ways. In the present program the end result is a trapezoidal tangent panel (Fig. 3) and various geometric quantities (about 60) associated with it. This is a much smaller number of geometric quantities than many other panel methods require. The order of the input points is along certain curves called N-lines (Fig. 1). On lifting portions of the body the first and last points on the N-line are at the trailing edge. The set of panels formed from the points lying on two consecutive N-lines on a lifting portion is denoted a lifting strip of panels.

The initial step in generating the panel consists of using a "canned" routine for fitting surfaces by parametric bicubic splines. This is applied to each panel individually to generate the panel coordinate system, the coordinates of the four corners of the panel in this system, and the three second derivatives of the surface at the origin of panel coordinates. The panel coordinate origin is the point of tangency to the surface of the tangent panel and is also the control point where the normal-velocity boundary condition is applied. The procedure for doing this is described in Appendix B.

3495H

As shown in Fig. 3, the corner point coordinates are  $\xi_K$ ,  $\eta_K$ , K=1, 2, 3, 4. The lengths of the parallel sides are:

$$d_{12} = d_F = \xi_2 - \xi_1,$$
  $d_{43} = d_S = \xi_3 - \xi_4$  (2.3.1)

The width of the panel is

$$w = n_1 - n_3 \tag{2.3.2}$$

The slanting sides are straight lines with equations of the form

$$\xi = m_0 + b \tag{2.3.3}$$

where

$$m_{32} = \frac{\xi_2 - \xi_3}{w}, \qquad m_{41} = \frac{\xi_1 - \xi_4}{w}$$

$$b_{32} = \frac{\xi_3 n_2 - \xi_2 n_3}{w}, \qquad b_{41} = \frac{\xi_4 n_1 - \xi_1 n_4}{w}$$
(2.3.4)

The maximum diagonal of the panel is

$$t = \max \begin{cases} \sqrt{(\xi_2 - \xi_4)^2 + (\eta_2 - \eta_4)^2} \\ \sqrt{(\xi_3 - \xi_1)^2 + (\eta_3 - \eta_1)^2} \end{cases}$$
 (2.3.5)

Further define

$$S_{32} = \sqrt{1 + m_{32}^2}$$
,  $S_{41} = \sqrt{1 + m_{41}^2}$  (2.3.6)

The lengths of the slanting sides are

$$d_{32} = wS_{32}$$
  $d_{41} = wS_{41}$  (2.3.7)

Also needed for lifting panels are the total arc lengths along the N-lines from the trailing edge up to the  $\eta\text{-axis}$  of the panel in question. These are

$$h_F = \sum d_F - \xi_1, \quad h_S = \sum d_S - \xi_4$$
 (2.3.8)

where the sums are over the previous panels of the lifting strip.

Finally the normalized moments of the area of the panel are required. The method of calculating these is in Appendix C.

### 2.4 Velocities Induced by the Source Distribution on the Panels

Formulas for the velocity induced by an individual panel at a point in space are obtained from the expressions developed in Appendix A by differentiating and then performing the indicated integrations over the flat projected panel. Different procedures are called for depending on the distance of the point in question from the panel. For nearby points, the expressions of Appendix A are integrated exactly. This procedure is rather lengthy and details are omitted. Only the final formulas for this "near field" are presented (Appendix D) and these are the key to the present panel method. It is assumed that the point in question has been transformed into the panel coordinate system and all nearfield formulas are given in terms of this coordinate system. For points further from the panel, the integrals of Appendix A are evaluated by a classic multipole expansion. The orders of the expansions are selected to be at least as high as the terms in question. This is a relatively simple procedure analytically, and the resulting "intermediate field" formulas require much less computing time than the near-field formulas (Appendix E). This computation also is carried out in panel coordinates. The velocities calculated by the near-field and intermediate-field formulas must be transformed into the reference coordinate system. For points even further away, a "far-field" approximation is used (Appendix F). This is obtained simply by retaining only the first terms in the multipole expansions. However, the far-field formulas have been put in vector form, and thus they can be evaluated directly in the so-called reference coordinate system in which the body is input. This eliminates the need for transformations and further reduces computing time. Some of the quantities in the near-field formulas lose numerical significance for certain ranges of values of the parameters, e.g. control point near the extension of a side or effect of a very long thin panel on adjacent control points. Most of these problems are due to the short word length used by IBM computers

3495H 8

and do not arise for CDC equipment. A variety of special formulas based on power series expansions have been developed for use in the troublesome situations. These are collected in Appendix G.

The source potential is given in Eqs. (A.31) through (A.35) of Appendix A. The velocity induced by the panel is obtained by taking the negative gradient to obtain

$$\vec{\nabla} = \vec{\nabla}^{(0)} \sigma_0 + [P \vec{\nabla}^{(P)} + 2Q \vec{\nabla}^{(Q)} + R \vec{\nabla}^{(R)} + \vec{\nabla}^{(1x)} \sigma_x + \vec{\nabla}^{(1y)} \sigma_y]$$
 (2.4.1)

where each individual velocity is the negative gradient of the corresponding potential.

# 2.5 The Source Derivative Term 5. Assembly of the Matrix of Influence Coefficients

# 2.5.1 The Numerical Differential Procedure. Geometric Constants

As stated in Section 2.4, the basic source velocity formula (2.4.1) contains coefficients  $\boldsymbol{\sigma}_{\boldsymbol{X}}$  and  $\boldsymbol{\sigma}_{\boldsymbol{y}},$  which are the derivatives of the source density with respect to the panel's coordinate directions. It is not intended that these be additional unknowns. Instead, they are expressed in terms of the unknown values of source density at the control points of the surrounding panels. Thus, ultimately the values of source density at the control points of the panels are the only unknowns. The source-derivative procedure is slightly different for the first and last panels of a strip and for panels of the first and last strips. However, the modifications are quite straightforward. In the initial discussion it is assumed that the panel on which source derivatives are being evaluated (the panel in question) has adjacent panels on all four sides as shown in Fig. 4. For the purposes of the present discussion only, the control points of the adjacent panels are numbered K=0, 1, 2, 3, 4 as shown in Fig. 4, where 0 denotes the element in question. These control points are transformed into the coordinate system of the panel in question. Let the  $\xi$  and  $\eta$  coordinates of these control points be  $\xi_{0K},~\eta_{0K},$ K = 0, 1, ..., 4 and the values of source density at the control points be  $\sigma_K$ , K = 0, 1,...,4 (evidently  $\xi_{00} = \eta_{00} = 0$ ). The differentiation process expresses the source derivatives on the panel in question in terms of the unknown values of source density on the adjacent panels in the form

$$\sigma_{\mathbf{x}} = \sum_{K=0}^{M} C_{K}^{(\mathbf{x})} \sigma_{K}$$

$$\sigma_{\mathbf{y}} = \sum_{K=0}^{M} C_{K}^{(\mathbf{y})} \sigma_{K}$$
(2.5.1)

where M represents the number of adjacent panels. It is 4 for interior panels, 3 for panels on the edge of a section, and 2 for panels in a corner of a section.

The essentials of the numerical process are that it calculates one-dimensional derivatives in the u and v directions of the parametric-cubic coordinate system of Appendix A and then expresses the derivatives with respect to the panel coordinates in terms of these.

For each panel, calculate the geometric quantities

$$\Delta \bar{\xi} = \frac{1}{2} [\xi_1 + \xi_2 - \xi_3 - \xi_4], \qquad a = \sqrt{(\Delta \bar{\xi})^2 + w^2}$$

$$u = \Delta \bar{\xi}/a, \qquad \bar{v} = w/a, \qquad \bar{d} = \frac{1}{2} (d_F + d_S)$$
(2.5.2)

For the purpose of one-dimensional differentiation, define the coordinates

$$x_{1} = -\frac{1}{2} (\bar{d}_{0} + \bar{d}_{1}), x_{2} = \frac{1}{2} (\bar{d}_{0} + \bar{d}_{2})$$

$$t_{3} = \frac{1}{2} (a_{0} + a_{3}), t_{4} = -\frac{1}{2} (a_{0} + a_{4})$$
(2.5.3)

where the subscripts are panel designations of Fig. 4. Then centered 3-point differentiation, which is appropriate in the interior of a section, gives

$$\sigma_{x} = \frac{x_{2}}{x_{1}(x_{2} - x_{1})} \sigma_{1} - \frac{x_{1} + x_{2}}{x_{1}x_{2}} \sigma_{0} - \frac{x_{1}}{x_{2}(x_{2} - x_{1})} \sigma_{2}$$

$$\sigma_{t} = \frac{t_{3}}{t_{4}(t_{3} - t_{4})} \sigma_{4} - \frac{t_{3} + t_{4}}{t_{4}t_{3}} \sigma_{0} - \frac{t_{4}}{t_{3}(t_{3} - t_{4})} \sigma_{3}$$
(2.5.4)

The first of Eqs. (2.5.4) already gives the first of Eqs. (2.5.1). Thus

$$c_0^{(x)} = -\frac{x_1 + x_2}{x_1 x_2}, \quad c_1^{(x)} = \frac{x_2}{x_1 (x_2 - x_1)}, \quad c_2^{(x)} = \frac{x_1}{x_2 (x_2 - x_1)}$$

$$c_3^{(x)} = c_4^{(x)} = 0$$
(2.5.5)

By analogy the second of Eqs. (2.5.4) gives t-derivative coefficients

$$c_{4}^{(t)} = \frac{t_{3}}{t_{4}(t_{3} - t_{4})}, \quad c_{0}^{(t)} = \frac{t_{3} + t_{4}}{t_{3}t_{4}}, \quad c_{3}^{(t)} = -\frac{t_{4}}{t_{3}(t_{3} - t_{4})}$$

$$c_{1}^{(t)} = c_{2}^{(t)} = 0$$
(2.5.6)

By the chain rule

$$\sigma_{t} = \sigma_{x} \mathbf{u} + \sigma_{y} \mathbf{v} \tag{2.5.7}$$

Thus

$$\sigma_{y} = \frac{1}{v} (\sigma_{t} - \sigma_{x} u) = \sum_{K} \frac{1}{v} (C_{K}^{(t)} - uC_{K}^{(x)}) \sigma_{K}$$
 (2.5.8)

and finally

$$C_K^{(y)} = \frac{1}{v} (C_K^{(t)} - uC_K^{(x)}), \qquad K = 0, 1, ..., 4$$
 (2.5.9)

For panels on the edge of sections, the centered 3-point formulas (2.5.4) must be replaced by 2-point one-sided formulas in the direction (or directions) where a third value does not exist.

### 2.5.2 Logic of the Assembly Procedure

In the first-order method the velocity induced by a panel depends only on the source density on that panel and thus the "influence coefficients" for that panel are calculated solely from that panel's geometry. The essentially new feature of the source derivative procedure is that the velocity induced by a panel depends on the value of source density at the control point of that panel and also on the values of source density at the control points of adjacent elements. Similarly, the velocities induced by adjacent elements depend on the source density on the panel in question. Thus the "influence coefficients" for

a panel depend not only on the geometry of that panel but also on the geometry of adjacent panels and the assembly of the influence coefficient matrix is more complicated.

Let the panels be numbered consecutively in the order they have been formed. Thus, reference is made to the i-th panel and to the j-th panel where both i and j range from 1 to N. Another way of stating the essentially new feature above is that a distinction must be made between the effect of the j-th panel and the effect of the j-th value of source density, whereas these two effects are identical in the first-order method. Let  $\hat{V}_{ij}$  be the velocity induced at the i-th control point by the j-th panel and  $\hat{V}_{ij}$  be the velocity induced at that point by the j-th value of source density. Then in the notation of Section 2.4 and the present section,

$$\vec{\Psi}_{ij}^{\pm} = [\vec{\psi}^{(0)} + \vec{\psi}^{(P)}_{P} + 2\vec{\psi}^{(Q)}_{Q} + \vec{\psi}^{(R)}_{R} + c_{o}^{(x)}\vec{\psi}^{(1x)} + c_{o}^{(y)}\vec{\psi}^{(1y)}]\sigma_{o} + \sum_{K=1}^{M} [c_{K}^{(x)}\vec{\psi}^{(1x)} + c_{K}^{(y)}\vec{\psi}^{(1y)}]\sigma_{K}$$
(2.5.10)

Notice that subscripts i and j are omitted on the right side of Eq. (2.5.10) for simplicity. In the overall numbering scheme,  $\sigma_0$  in (2.5.10) is  $\sigma_j$  and  $\sigma_l$ ,  $\sigma_2$ ,  $\sigma_3$  and  $\sigma_4$  have subscripts near j. All velocities in (2.5.10) depend only on the geometry of the j-th panel. The curvatures P, Q, R and the coefficients  $C_K^{(x)}$  and  $C_K^{(y)}$  depend on the surrounding panels, but once calculated they can be associated with the j-th panel only.

Consider now the i-th row of the matrix  $\vec{V}_{ij}$ , which expresses the effects of the various values of source density at the i-th control point. The first bracketed term in (2.5.10) is an effect of  $\sigma_j$  and is added to the j-th location of the row. The four terms in the summation of (2.5.10) represent effects of other values of  $\sigma$  and must be added to other locations. Referring to Fig. 4, it can be seen that the panels numbered 1 and 2 are on the same strip as the panel in question and thus represent effects of the preceding and succeeding values of  $\sigma$ . In particular, value 1 is associated with  $\sigma_{j-1}$  and value 2 with  $\delta_{j+1}$  and the relevant terms of Eq. (2.5.10) are added to those locations. Panels 3 and 4, however, are on adjacent strips. Suppose there are E

panels on each strip. Then value 3 is associated with  $\sigma_{j-E}$  and value 4 with  $\sigma_{j+E}$ , and the relevant terms of Eq. (2.5.10) are added to these locations of the row.

# 2.6 Vorticity Influence of a Panel

the man in a second second

# 2.6.1 Panel Vorticity and the Underlying Dipole Distribution

The effect of a vorticity distribution on a panel cannot be expressed in terms of a potential, as mentioned above. The velocity induced by the panel of Fig. 8 at a point (x,y,z) is

$$\vec{V}_{\omega} = \iint_{S} \frac{\vec{\omega} \times \vec{r}}{r^3} dS \qquad (2.6.1)$$

where  $\vec{\omega}$  is the vector vorticity strength and

$$\vec{r} = (x - \xi)\hat{i} + (y - \eta)\hat{j} + (z - \zeta)\hat{k}$$
 (2.6.2)

The distance r has its usual meaning, which is also equal to  $|\vec{r}|$ , and the integral is over the true panel. To insure that the vorticity satisfies the usual vorticity conservation theorems over the panel, it is convenient to express  $\vec{\omega}$  in terms of equivalent dipole distribution  $\mu$ . As shown in Ref. 5, the relation is

$$\dot{\omega} = -\dot{\mathbf{n}} \times \mathbf{grad}\mu \tag{2.6.3}$$

where  $\vec{n}$  is the unit normal vector, whose components  $\eta_{\xi}$ ,  $\eta_{\eta}$ ,  $\eta_{\zeta}$  are given by Eqs. (A.8) through (A.10). In Appendix A,  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  were used as unit vectors along the axes of the panel coordinate system, because no other coordinate system entered the discussion. Here, to avoid any possible confusion, these unit vectors will be written  $\vec{i}_{e}$ ,  $\vec{j}_{e}$ ,  $\vec{k}_{e}$  (Appendix B) to specify that they are indeed unit vectors of the panel system. To be compatible with the source density and panel-geometry expansions,  $\mu$  is taken to be a quadratic function of panel coordinates  $\xi$  and  $\eta$  in

$$\mu = \mu_0 + \mu_X \xi + \mu_y \eta + \mu_{XX} \xi^2 + \mu_{XY} \xi \eta + \mu_{YY} \eta^2$$
 (2.6.4)

so that the components of  $\vec{\omega}$  vary linearly over the panel. Furthermore, since a two-term expansion of the source potential is all that appears feasible, only a two-term expansion of Eq. (2.6.1) is required. Evidently

$$\frac{\partial \mu}{\partial \xi} = \mu_{\mathbf{X}} + 2(\mu_{\mathbf{X}\mathbf{X}}\xi + \mu_{\mathbf{X}\mathbf{y}}n)$$

$$\frac{\partial \mu}{\partial n} = \mu_{\mathbf{y}} + 2(\mu_{\mathbf{X}\mathbf{y}}\xi + \mu_{\mathbf{y}\mathbf{y}}n)$$
(2.6.5)

are two-term expansions of the components of  $grad\mu$ . Then Eq. (2.6.3) gives

$$\vec{\omega} = (n_{\zeta} \frac{\partial \mu}{\partial \eta}) \vec{i}_{e} - (n_{\zeta} \frac{\partial \mu}{\partial \xi}) \vec{j}_{e} + (n_{\eta} \frac{\partial \mu}{\partial \xi} - n_{\xi} \frac{\partial \mu}{\partial \eta}) \vec{k}_{e}$$
 (2.6.6)

Two-term expansions of the  $\vec{i}_e$  and  $\vec{j}_e$  components of (2.6.6) contain zeroth and first-order terms. Since the leading term of the  $\vec{k}_e$  component is linear, only that one term is required. The two-term expansion of Eq. (2.6.6) is

$$\vec{\omega} = [\mu_{y} + 2(\mu_{xy}\xi + \mu_{yy}\eta)]\hat{f}_{e} - [\mu_{x} + 2(\mu_{xx}\xi + \mu_{xy}\eta)]\hat{j}_{e}^{+} + [-\zeta_{2\eta}\mu_{x} + \zeta_{2\xi}\mu_{y}]\hat{k}_{e}$$
(2.6.7)

Now using Eq. (2.6.7), a two-term expansion of Eq. (2.6.1) may be carried out, and the resulting velocity put in terms of source influences. This development is carried out in Appendix H.

The dipole strength is required to vary linearly over the N-lines bounding the panel. In particular

$$\mu = B_F(\xi + h_F)$$
 on  $\eta = \eta_1$  (2.6.8)  
 $\mu = B_S(\xi + h_S)$  on  $\eta = \eta_3$ 

when these are applied to Eq. (2.6.4), it turns out that  $\mu$  must have the form

$$\mu = \frac{1}{W} \left[ \xi \eta + h_F \eta - \eta_3 \xi - \eta_3 h_F + cw(\eta - \eta_3)(\eta - \eta_1) \right] B_F$$

$$- \frac{1}{W} \left[ \xi \eta + h_S \eta - \eta_1 \xi - \eta_1 h_S + cw(\eta - \eta_3)(\eta - \eta_1) \right] B_S$$
(2.6.9)

Notice that  $\mu$  is expressed as the sum of two dipole distributions: one multiplying  $B_F$  that is zero for  $\eta=\eta_3$  and one multiplying  $B_S$  that is zero for  $\eta=\eta_1$ . Thus, one dipole distribution is associated with each N-line. The logic of the calculation keeps these two separate until a later stage of the calculation. The constants  $B_F$  and  $B_S$  are essentially bound vorticity strengths that are determined by the Kutta condition. It is the distribution multiplying each that is important at this stage, so in effect the B's are set equal to unity. The constants in the underlying dipole distributions are

| μ-derivative            | First N-line                         | Second N-line                     |
|-------------------------|--------------------------------------|-----------------------------------|
| $\mu_{X}$               | <u>ग्।</u><br>₩                      | - <sup>n</sup> 3                  |
| $^{\mu}\mathbf{y}$      | $\frac{h_F}{W} - c(\eta_1 + \eta_3)$ | $-\frac{h_S}{w}+c(\eta_1+\eta_3)$ |
| <sup>μ</sup> xx         | 0                                    | 0 (2.6.10)                        |
| <sup>μ</sup> x <b>y</b> | <u>1</u><br>2v                       | - <del>1</del>                    |
| <sup>μ</sup> yy         | С                                    | -c                                |

The foregoing are on-body formulas. For wake panels set

$$\mu_{x} = \mu_{xx} = \mu_{xy} = 0$$

$$h_{F} = L_{F} \text{ (total)}, \qquad h_{S} = L_{S} \text{ (total)}$$

where L (total) is the total arc length of an N-line from trailing edge to trailing edge. Equation (2.6.11) reflects the fact that the underlying dipole strength is constant along N-lines in the wake.

All constants in Eq. (2.6.10) are known except c. It is determined to make the dipole strength as continuous as possible from one panel to the next along a lifting strip. Clearly nothing enforces continuity if there is a physical gap between the panels, so c is determined assuming that adjacent panels on a lifting strip share a common side. This seems the best that can be done.

Consider the dipole strength along the "top" side of the panel between the points  $(\xi_3, \eta_3)$  and  $(\xi_2, \eta_2)$  (Fig. 3). It is obtained by setting  $\xi = m_{32}\eta + b_{32}$  in Eq. (2.6.9). The result is

$$\mu(32) = \mu(1inear) + (B_F - B_S) \{cw^2 + wm_{32}\} \left[\frac{s}{L} \left(\frac{s}{L} - 1\right)\right]$$
 (2.6.12)

In the square bracket s denotes arc length along the side and L the total length of the side (L =  $d_{32}$  in the notation of Section 2.3). The function  $\mu(\text{linear})$  is a linear function that varies from the value of  $\mu$  at the point ( $\xi_3$ ,  $\eta_3$ ) to the value of  $\mu$  at the point ( $\xi_2$ ,  $\eta_2$ ). On the adjacent element, the "bottom" side that lies between the points ( $\xi_4$ ,  $\eta_4$ ) and ( $\xi_1$ ,  $\eta_1$ ) is the one that lies along the side discussed above. The dipole strength along this side is

$$\mu(41) = \mu(1inear) + (B_F - B_S)\{cw^2 + wm_{41}\} \begin{bmatrix} s \\ T \end{bmatrix} \begin{bmatrix} s \\ T \end{bmatrix} - 1)$$
 (2.6.13)

Ignoring any small gaps between elements, the quantities  $\mu(linear)$ , s, and L are identical in Eqs. (2.6.10) and (2.6.11), as are  $B_F$  and  $B_S$ . The only quantities that are different are those in the curly brackets. Here c and w correspond to different elements, while the slopes  $m_{32}$  and  $m_{41}$  correspond to different sides of different elements. Thus continuity between panels i and i + 1 of a strip is obtained if

$$w^{(i)}[c^{(i)}w^{(i)} + m_{32}^{(i)}] = w^{i+1}[c^{(i+1)}w^{(i+1)} + m_{41}^{(i+1)}]$$
(2.6.14)

where w is panel width (usually the same for al! panels of a strip),  $m_{32}$  is the slope of the upper panel edge and  $m_{41}$  the slope of the lower panel edge. Eq. (2.6.14) is solved for successive values of  $c^{(i)}$  beginning with

$$c^{(1)} = 0$$
 (2.6.15)

and proceeding over all on-body panels of the strip. The choice, Eq. (2.6.15), is arbitrary and expresses the fact that Eq. (2.6.14) has a nonunique solution.

### 2.6.2 Edge Vortices

The fundamental development of Ref. 5 shows that the velocity induced at a point in space by a dipole distribution  $\mu$  over a panel is identical to the sum of the velocity induced by a vorticity distribution  $\vec{\omega}$ , as given by Eq. (2.6.3), and the velocity due to a concentrated line vortex around the perimeter of the panel whose variable strength equals the local value of dipole strength. While the velocity due to the dipole distribution is inherently a potential flow (zero curl), neither of the other two velocities are; only their sum is potential. Using  $\vec{\omega}$  in the form of Eq. (2.6.3) satisfies the vorticity conservation theorems over the surface of the panel but not at its edges. Thus to the vorticity velocity of Appendix H must be added the effects of line vertices on the edges of the panel with strength equal to the local value of the underlying dipole distribution. Since an actual body obviously does not have line vortices in its surface, in the absence of numerical approximation the edge vortices of adjacent panels would cancel exactly. Thus it might be hoped that the panel edge vortices could be ignored away from physical edges such as wing tips. It turns out that this is true for spanwise panel edges but not for streamwise panel edges. That is, referring to Fig. 1, the edge vortices of adjacent panels on the same lifting strip cancel to a good approximation (especially when the continuity algorithm of Section 2.6.1 is employed) and thus may be ignored. However, the edge vortices that lie along an N-line in general do not cancel with those of panels of the adjacent lifting strip to a degree that justifies their omission.

There are several ways of accounting for the effect of the edge vortex, all of which are theoretically equivalent to some order of accuracy. The approach used here is the analogy of that used throughout the higher-order development. A vortex lying along the edge of a curved panel is projected into the tangent plane. The relevant formulas are developed in Appendices I and J.

### 2.6.3 The Trailing Vortex Wake

The wake is input to the program by specifying points along N-lines just as for on-body points. The option exists of making the last panel on each wake

3495H 17

strip semi-infinite. In many cases, such as a clean wing, the location of the wake has very little effect on the solution. In such cases, the wake may be taken as semi-infinite right from the trailing edge, and no wake points need be specified. This optional wake may have the direction of either the trailing-edge bisector or the x-axis.

Wake panels have vorticity but no source density. However, because of the way in which vorticity effects are calculated in the present program, essentially the same induced-velocity formulas must be evaluated as for on-body panels. Of course, no boundary conditions are applied on wake panels, and their presence does not affect the order of the matrix of the linear equations for the source density.

For finite wake panels, the basic influence formulas are unchanged, but the constants defining the underling dipole distribution and the edge vortex formulas are modified as described in the previous sections. Also modified are the values of c that improve dipole continuity between panels of a lifting strip (Section 2.6.1). Let superscript (1) denote quantities associated with the first on-body element of a lifting strip and superscript u denote quantities associated with the last on-body element of the strip. Similarly, the superscripts w1, w2, etc. denote the first wake element, second wake element, etc. of the same lifting strip. The important value of c is c<sup>(w1)</sup>, i.e., the one for the first wake element. It is computed from

$$c^{(w1)} = \frac{w^{(u)}[w^{(u)}c^{(u)} + m_{32}^{(u)}] - w^{(1)}[w^{(1)}c^{(1)} + m_{41}^{(1)}]}{[w^{(w1)}]^2}$$
(2.6.15)

where the quantities w,  $m_{32}$ ,  $m_{41}$  have their usual meaning (usually  $c^{(1)} = 0$ ). Values of c for the remaining wake elements are obtained from

$$c^{(w1)}[w^{(w1)}]^2 = c^{(w2)}[w^{(w2)}]^2 = c^{(w3)}[w^{(w3)}]^2 = ...$$
 (2.6.16)

In most cases of interest, the trailing vortex wake extends to infinity. To facilitate accounting for this condition, provision has been made for considering the last element of the wake to be semi-infinite. A finite element of the sort shown in Fig. 3 is formed at the end of the wake, including all the geometric quantities of Section 2.3. The induced velocity calculation for this

element is performed using the origin of coordinates appropriate to the finite element, but the formulas used to calculate induced velocities are appropriate for the semi-infinite element. Naturally, all points in space are in the "near field" with respect to a semi-infinite element, so it is the formulas of Appendix D that apply. These formulas are modified by setting

$$m_{32} = 0$$
 (2.6.17)  $\xi_2 + \infty$ 

This yields immediately

$$\alpha_1$$
,  $\beta_1$ ,  $\gamma_1$ ,  $\alpha_4$ ,  $\beta_4$ ,  $\gamma_4$  unchanged (2.6.18)  
 $\alpha_3 = \alpha_2 = -1$ ,  $\beta_3 = \beta_2 = \gamma_3 = \gamma_3 = 0$ 

The log functions, Eq. (D.3), and their derivatives, Eq. (D.6) are replaced by

$$L^{(41)}$$
 = unchanged, all derivatives unchanged (2.6.19)  
 $L^{(32)}$  = 0, all derivatives equal zero

$$-L^{(12)} + L^{(34)} = \log \frac{r_4 - (x - \xi_4)}{r_1 - (x - \xi_1)}$$
 (2.6.20)

$$\frac{\partial L^{(34)}}{\partial x} = \frac{\alpha_4 - 1}{r_4 - (x - \xi_4)} \qquad \frac{\partial L^{(12)}}{\partial x} = \frac{\alpha_1 - 1}{r_1 - (x - \xi_1)} \\
\frac{\partial L^{(34)}}{\partial y} = \frac{\beta_4}{r_4 - (x - \xi_4)} \qquad \frac{\partial L^{(12)}}{\partial y} = \frac{\beta_1}{r_1 - (x - \xi_1)} \\
\frac{\partial L^{(34)}}{\partial z} = \frac{\gamma_4}{r_4 - (x - \xi_4)} \qquad \frac{\partial L^{(12)}}{\partial z} = \frac{\gamma_1}{r_1 - (x - \xi_1)}$$
(2.6.21)

The inverse tangent functions, Eqs. (D.4), and their derivatives, Eqs. (D.5), are replaced by

$$T_{K}^{(32)} = \tan^{-1} \left( \frac{y - \eta_{k}}{z} \right) \qquad k = 3 \text{ or } 2$$

$$T_{K}^{(41)} = \text{unchanged}, \qquad k = 4 \text{ or } 1$$

$$\frac{\partial T_{k}^{(32)}}{\partial x} = 0$$

$$\frac{\partial T_{k}^{(32)}}{\partial y} = \frac{z}{z^{2} + (y - \eta_{k})^{2}}, \qquad \eta_{2} = \eta_{1} \qquad k = 3 \text{ or } 2$$

$$\frac{\partial T_{k}^{(32)}}{\partial z} = \frac{-(y - \eta_{k})}{z^{2} + (y - \eta_{k})^{2}}$$

$$\frac{\partial T_{k}^{(41)}}{\partial x} = \text{unchanged}$$

$$\frac{\partial T_{k}^{(41)}}{\partial z} = \text{unchanged}$$

$$k = 4 \text{ or } 1$$

$$\frac{\partial T_{k}^{(41)}}{\partial z} = \text{unchanged}$$

All of the quantities of Appendix D are now recalculated using these modified values, except that  ${\rm H}_{\rm O2}$  is replaced by

$$H_{02} = m_{41} \frac{r_4 - r_1}{1 + m_{41}^2} - \frac{x - m_{41}y - b_{41}}{(1 + m_{41}^2)^{3/2}} L^{(41)} + w \qquad (2.6.24)$$

The induced velocities from the last wake element are added to the other dipole velocities of the lifting strip in the ordinary way.

# 2.6.4 Some Special Situations

Two special situations exist where panels must be placed inside the body surface. No normal-velocity boundary condition can be applied at such elements

and no source density should be applied to them. However, they do have vorticity and this must be accounted for.

١

The first situation occurs when a portion of the body intersects a lifting portion at a finite angle (often nearly normal) without breaking the continuity of the trailing edge. An example is provided by the wing-pylon intersection shown in Fig. 5. A certain portion of the lifting body surface is "inside" the pylon. However, the underlying dipole distribution should be continuous through this region to avoid numerical difficulties. Thus, as far as vorticity calculations are concerned, the "inside" panels are normal members of the lifting strips to which they belong. But they are ignored as far as source calculations or boundary conditions are concerned. Such panels are designated "ignored panels." They usually comprise only part of a lifting strip.

The second situation occurs when a lifting portion of the body intersects another portion at a finite angle (often nearly normal). The important case of this is the wing-fuselage intersection, as illustrated in Fig. 6. As is well-known, the local "section lift coefficient" on the wing does not fall to zero at the fuselage intersection. Thus, the underlying dipole strength on the N-line lying along the intersection is not zero. However, the lifting section cannot simply be terminated, because that would result in a concentrated edge vortex filament right on the surface. Accordingly, an additional or "extra" lifting strip is added to the lifting section (see Fig. 6). It is either the first or the last strip of the lifting section. The extra strip lies inside the other body and is a complete lifting strip including wake. No source densities or normal-velocity boundary conditions are applied to the panels of the extra strip. The underlying dipole strength is taken constant in the "spanwise" direction across the extra strip. The value of the dipole strength on the extra strip has nonzero dipole strength and may lead to a concentrated edge vortex in the streamwise direction. For example, as shown in Fig. 5, the vortex may lie along the fuselage centerline and its downstream extension. If the lifting configuration has a right-and-left symmetry, e.g., a fuselage with both wings, and if the flow is also symmetric, e.g. zero yaw, the extra strips for the right and left sides have the same strengths on their interior edges. Thus, in this case the edge vortices cancel. If, however, the lift is not

symmetric, there will be an edge vortex. This is unavoidable because it is physically real. An example is the hub vortex of a propeller. This also occurs at a tip tank, which is essentially a small fuselage with only one wing.

### 2.6.5 Assembly of the Vorticity Onset Flows

As described in Sections (2.6.1) and (2.6.2), the velocity induced by the vorticity on a panel and the associated edge vortices fall naturally into two parts - one proportional to the value of B on the first N-line and one proportional to the value of B on the second N-line. These are summed over the lifting strip to yield two vorticity onset flows for each lifting strip. In general, each onset flow has three components at every control point. Specifically,

$$\psi_{ik}^{(F)} = \sum_{j}^{\text{strip } k} \psi_{ij}^{(F)}$$

$$k = 1, 2, ..., L$$

$$\psi_{ik}^{(S)} = \sum_{j}^{\text{strip } k} \psi_{ij}^{(S)}$$

$$(2.6.25)$$

where L is the number of lifting strips. The summations of Eq. (2.6.25) are over a complete lifting strip including the wake elements. If a lifting section begins with an "extra strip" (Section 2.6.4), both velocities  $\Psi_{ik}^{(F)}$  and  $\Psi_{ik}^{(S)}$  for the extra strip are added to the velocity  $\Psi_{ik}^{(F)}$  corresponding to the first ordinary strip of the section. Similarly, if the last strip of a lifting section is an extra strip, both velocities for the extra strip are added to the  $\Psi_{ik}^{(S)}$  of the last ordinary lifting strip of the section. (This gives an underlying dipole strength on the extra strip that is constant at a value equal to that attained on the adjacent lifting strip along the common N-line of the two strips.) Thus, the calculation of Eq. (2.6.25) gives an N x L matrix of velocities at the control points, where L refers to ordinary lifting strips only. Since L is small compared to N, these matrices are small compared to the source-velocity matrices. Each of the velocities, Eq. (2.6.25), represents the velocity due to an underlying dipole distribution of the strip that has slope unity on one N-line and zero on the other with a linear "spanwise" variation in between.

The characteristic onset flow velocities due to a strip are

$$\vec{V}_{ik}^{(0)} = \vec{V}_{ik}^{(S)} + \vec{V}_{ik}^{(F)}$$

$$\vec{V}_{ik}^{(1)} = \frac{1}{7} [\vec{V}_{ik}^{(S)} - \vec{V}_{ik}^{(F)}]$$
(2.6.26)

The first velocity of Eq. (2.6.26) is that due to an underlying dipole distribution on the strip that is constant in the "spanwise" direction. The second velocity is that due to a dipole distribution that varies linearly in the "spanwise" direction and has zero value at "midspan." These velocities are used to form the basic circulatory onset flows  $\vec{V}_i^{(k)}$ .

If the "step function" option for bound vorticity is used, the proper form of the dipole distribution is simply constant in the "spanwise" direction over a lifting strip, and the velocity  $\vec{V}_{ik}^{(0)}$  is precisely the onset flow. Thus, for this option, the vorticity onset flows are

$$\vec{V}_{i}^{(k)} = \vec{V}_{ik}^{(0)}, \qquad k = 1, 2, ..., L$$
 (2.6.27)

The above yields L onset flows, each of which corresponds to a unit value of the "streamwise" dipole derivative B on one lifting strip and zero values of B on all other lifting strips.

The machinery for the "piecewise linear" option for bound vorticity is somewhat more complicated. The "spanwise" variation of the "streamwise" dipole derivative B (bound vorticity) is linear in the "spanwise" direction across a lifting strip. Thus, the velocity at the i-th point (control point or off-body point) due to the k-th strip is

$$\vec{V}_{i}$$
 (strip k) =  $\vec{V}_{ik}^{(0)} B_{k} + w_{k} \vec{V}_{ik}^{(1)} B_{k}^{i}$  (2.6.28)

where  $\mathbf{w}_k$  is the "spanwise" width of the strip. B' is the "spanwise" derivative of B, and subscripts k denote quantities associated with the k-th lifting strip. The derivative  $\mathbf{V}_k$  is evaluated by a parabolic fit through  $\mathbf{B}_{k-1}$ ,  $\mathbf{B}_k$  and  $\mathbf{B}_{k+1}$ . Specifically, define

$$D_{k} = -\frac{w_{k}}{w_{k} + 1/2(w_{k-1} + w_{k+1})} \left[ \frac{w_{k} + w_{k+1}}{w_{k} + w_{k-1}} \right]$$

$$E_{k} = \frac{w_{k}}{w_{k} + 1/2(w_{k-1} + w_{k+1})} \left[ \frac{w_{k} + w_{k+1}}{w_{k} + w_{k-1}} - \frac{w_{k} + w_{k-1}}{w_{k} + w_{k+1}} \right]$$

$$F_{k} = \frac{w_{k}}{w_{k} + 1/2(w_{k-1} + w_{k+1})} \left[ \frac{w_{k} + w_{k-1}}{w_{k} + w_{k+1}} \right]$$
(2.6.29)

Then Eq. (2.6.28) is approximated numerically by

$$\vec{V}_i$$
 (strip k) =  $\vec{V}_{ik}^{(0)} B_k + \vec{V}_{ik}^{(1)} [D_k B_{k-1} + E_k B_k + F_k B_{k+1}]$  (2.6.30)

The velocity Eq. (2.6.30) contains values of the "streamwise" dipole derivative B for three consecutive strips. However, a proper circulation onset flow is proportional to the value of B on a single strip. Since each  $B_k$  enters  $\vec{V}_i$  (strip k) for three consecutive strips, its three contributions may be summed to give the basic vorticity onset flow.

$$\vec{\mathbf{v}}_{i}^{(k)} = \vec{\mathbf{v}}_{ik}^{(0)} + \vec{\mathbf{v}}_{i,k-1}^{(1)} \mathbf{F}_{k-1} + \vec{\mathbf{v}}_{ik}^{(1)} \mathbf{E}_{k} + \vec{\mathbf{v}}_{i,k+1}^{(1)} \mathbf{D}_{k+1}$$
 (2.6.31)

In performing the above parabolic fit Eq. (2.6.30), the values of the function B to be fit are, of course, the values of bound vorticity on the strips. Each of these has been associated with an abscissa or "independent variable" that expresses the spanwise position of each strip. Differences of these abscissas appear as combinations of the widths  $\mathbf{w}_k$ . Calculation of the  $\mathbf{w}_k$  is not obvious, because in general the "span" or width of each strip is not constant but varies in the "chordwise" direction. An average width is calculated for each strip and used in the calculation above.

The calculational machinery of the program insures that the underlying dipole strength varies linearly in arc length along an N-line, i.e. that dipole strength equals B2, where B is a constant to be determined and 2 is arc length measured from the lower surface trailing edge. In particular, at the upper surface trailing edge, the dipole strength is BL (total). This is the circulation about the N-line and the value of vorticity that carries into the wake. The machinery above fits the spanwise distribution of dipole derivative

B, but it makes better sense physically to fit the circulation distribution BL (total). This is a smcother function because it is independent of planform breaks.

The code has the option of fitting either B or BL (total). While the above concept is somewhat complicated to explain, its numerical implementation is simplicity itself. All that is necessary is to divide the vorticity onset flows associated with each N-line by the corresponding values of L (total). Thus in Eq. (2.6.26)

$$\begin{array}{c|c} \hline v_{ik}^{(F)} \\ \hline L_F(total) \end{array} \qquad \begin{array}{c} \hline v_{ik}^{(F)} \\ \hline \hline v_{ik}^{(S)} \\ \hline L_S(total) \end{array} \qquad \begin{array}{c} \hline v_{ik}^{(S)} \\ \hline v_{ik}^{(S)} \\ \end{array}$$

No other changes are necessary. These are added to produce a single dipole onset flow per strip and a complete flow solution obtained for it.

### 2.7 The Kutta Condition

The Kutta condition is applied as a condition of pressure equality on the upper and lower surfaces of the trailing edge, which amounts to a condition of equal velocity magnitude. As a numerical approximation, the Kutta condition may be applied by equating pressures at the control points of the two panels adjacent to the trailing edge on the upper and lower surfaces of the wing. Alternatively, velocities at the upper surface control points of the few panels nearest the trailing edge can be extrapolated to obtain velocity components "at" the trailing-edge upper surface, and the same could be done for the lower surface. This last allows application of the Kutta condition more nearly at the trailing edge, and the analogy of this procedure yields considerable improvement in accuracy in two-dimensional cases. This is the option used in the present method.

However the point of application of the Kutta condition is chosen, the logic of the calculation is the same. In particular, a velocity vector can be calculated at the upper and at the lower trailing-edge point for each strip of panels (Fig. 1). From the discussion of Sections 2.5 and 2.6.5 it is clear that the velocity vector at the i-th control point is given by

$$\vec{V}_{i} = \sum_{i=1}^{N} \vec{V}_{ij} \sigma_{j} + \sum_{k=1}^{L} \vec{V}_{i}^{(k)} B_{k} + \vec{V}_{\infty}$$
 (2.7.1)

where  $\vec{V}_{\infty}$  is the onset flow (usually a uniform stream). Initially, the  $\gamma_j$  and  $B_k$  are unknown, but it can be seen that  $\vec{V}_i$  depends on them linearly. If velocities are extrapolated to the trailing edge, this linear dependence remains. Let superscripts U and L denote velocities at the upper and lower trailing edge, respectively. Further let subscript  $m=1,\,2,\,\ldots,\,L$  denote conditions on the m-th lifting strip of panels. Thus  $\vec{V}_{ij}^{(U)}$  and  $\vec{V}_{ij}^{(L)}$  are the velocity vectors at the upper and lower trailing edge, respectively, of the m-th lifting strip. The condition that these two velocity vectors have equal magnitudes may be written in terms of dot products as

$$\vec{\nabla}_{m}^{(U)} \cdot [\vec{\nabla}_{m}^{(U)} + \vec{\nabla}_{m}^{(L)}] = \vec{\nabla}_{m}^{(L)} \cdot [\vec{\nabla}_{m}^{(U)} + \vec{\nabla}_{m}^{(L)}]$$
 (2.7.2)

Applying Eq. (2.7.2) at the trailing edge of each lifting strip yields L quadratic equations in the (N + L) unknowns  $\sigma_{j}$  and  $B_{k}$  .

## 2.8 Iterative Matrix Solution

The velocity induced at the i-th control point by the source and vortex singularities is given in Eq. (2.7.1). Taking the scalar products of these velocity vectors with the unit normal vector  $\vec{n}_i$  of each control point gives an N x N matrix of source influence coefficients and an N x L matrix of vortex influence coefficients defining the normal-velocity influence of each elementary singularity distribution at every control point. If we define the solution vector X whose entries are the source strengths  $\sigma_j$ , (j=1,N) followed by the vortex strengths  $B_k$ , (k:1,L), the condition of zero normal velocity on the body can be written in the form

 $AX = R \tag{2.8.1}$ 

where A is the N  $\times$  (N+L) matrix of source and vortex normal velocity influence coefficients, and the right side in Eq. (2.8.1) is the negative of the normal component of the freestream velocity. It is important to note that A is purely geometric and does not depend on the onset flow, which enters only the right side.

Equation (2.8.1) defines a system of N linear equations in the (N+L) unknown singularity strengths. A further set of L equations therefore are required to complete the formulation of the problem. These equations are provided by the Kutta condition, whose derivation is outlined in the previous section. This condition ensures that the computed upper and lower surface pressures match at the trailing edge. The resulting equation, (2.7.2), can be written in the form

$$(\mathbf{V}^{(0)} - \mathbf{V}^{(L)}) \cdot \mathbf{V}_{av} = 0$$
 (2.8.2)

where  $\vec{v}^{(U)}$  and  $\vec{v}^{(L)}$  are the upper and lower surface trailing edge velocities while  $\vec{v}_{av}$  is the average of these two velocities.

One Kutta condition is applied for each lifting strip, giving a set of N linear and L nonlinear equations to be solved for the N+L unknowns. For complex configurations, N can be large, up to 2000 in the current version of the code, while L is typically between one and two orders of magnitude less.

The computing time required for the solution of the linear equations by a direct solution is proportional to N<sup>3</sup>, while that required for an iterative matrix solution is proportional to N<sup>2</sup> per iteration. Therefore, provided that the number of iterations required to obtain a converged solutions is relatively small (compared with the number of unknowns), there is a large benefit to be obtained through the use of an iterative matrix solution. The scheme adopted here is an accelerated block Gauss-Siedel iterative procedure which has been shown to give rapidly convergent solutions for a wide range of geometries (Ref. 8). This section will outline the details of this iterative scheme, and Appendix M will present the details of the acceleration scheme which has been

adopted in order to improve the speed and the stability of the convergence procedure.

As pointed out above, the Kutta condition to be applied is nonlinear, and so it must be linearized in some manner consistent with the iterative solution procedure which is to be applied. If we introduce the subscript K to denote quantities evaluated after the K-th iteration, Eq. (2.8.2) can be written as

$$(\vec{v}^{(U)} - \vec{v}^{(L)})_{K} - (\vec{v}_{av})_{K-1} = 0$$
 (2.8.3)

so that the average velocity from the previous iteration is used. For the first iteration,  $\vec{v}_{av}$  is replaced by a vector along the local trailing-edge bisector, which ensures that the physically meaningful root to the Kutta condition is selected in which both the upper and lower surface velocities leave the body at the trailing edge.

### 2.8.1 Block Gauss-Siedel Iterative Scheme

It was shown by Hess (Ref. 9) that the Gauss-Siedel iterative matrix solution scheme converges very rapidly for simple external flow problems. This approach, which is described by Varga (Ref. 10), relies on solving a succession of lower triangular matrix equations of the form

$$A_{R}X_{K} = R - A_{U}X_{K-1}$$
 (2.8.4)

where  $X_K$  is the K-th approximation to the solution. The matrix  $A_{g}$  represents the diagonal and lower triangular part of A, while  $A_{u}$  represents the upper triangular part.

For lifting flow problems there is a strong coupling between the source and dipole strengths for a given lifting strip. Therefore, in order to maintain the diagonal dominance of the matrix, it is necessary to adopt a block Gauss-Siedel scheme. The particular approach used here takes the source strengths and the associated dipole strength for each lifting strip as separate blocks in the solution vector. In this way the normal velocity conditions for a given lifting strip are satisfied simultaneously along with the Kutta condition before

proceeding with the solution for the next block. This is not the only way in which the block structure could be implemented. Reference 11, for instance, groups all of the dipole unknowns together as a single block in the matrix. However, for the nonlinear Kutta condition, the approach adopted here is more convenient. For nonlifting sections of a configuration, the choice of the block structure is less crucial. As the block size for such panels is increased, the computational effort is increased but the rate of convergence is also increased. The use of a block size of 50 has been found to give a good compromise.

This iterative scheme is equivalent to solving a series of quasi-two-dimensional problems corresponding to each block in the matrix. The onset flow for each of these calculations includes the current effects of all the other panels on the body. Therefore, as the solution converges, a fully consistent three-dimensional solution is obtained.

The iterative solution procedure can be broken down into two steps, the first of which involves the calculation of the right-hand side of Eq. (2.8.4) based on the previous solution,

$$RHS_{K-1} = R - A_{u}X_{K-1}$$
 (2.8.5)

The second step is the calculation of the new approximation

$$A_{\ell}X_{K} = RHS_{K-1} \tag{2.8.6}$$

Each of these steps is performed successively for each block of unknown source strengths, each of which involves the direct solution of a small set of simultaneous equations. In addition, for lifting strips, the dipole strength is computed by satisfying the Kutta condition for that particular strip.

At this stage, it should be pointed out that, for large matrix equations, the whole coefficient matrix A cannot be stored in the computer memory at one time. The order in which the matrix is formed and stored on disc will therefore

influence the way in which the matrix solution scheme is formulated. In general, the Gauss-Siedel iteration scheme is more naturally suited to a matrix which is stored by rows. However, when formulated, as outlined in Eqs. (2.8.5) and (2.8.6), the scheme can be applied to matrices stored either by rows or by columns. The matrix multiplication operations involved in both Eqs. (2.8.5) and (2.8.6) can be accomplished for either row or column stored matrices. The only difference arises from the order in which the multiplication loops are nested.

# 2.8.2 Convergence Acceleration Scheme

The previous section describes the implementation of the block Gauss-Siedel iteration scheme in a three-dimensional panel method calculation. For many external flow problems, such as the flow past wing-body configurations, this procedure converges very rapidly and significant savings in computer time can be achieved for large panel numbers by comparison with a direct matrix solution. However, for more complicated configurations, such as three-dimensional high-lift systems or wing/pylon/nacelle configurations, the convergence of this scheme becomes worse, and in some cases it can fail to converge entirely. Traditional convergence acceleration techniques are based on the extrapolation of the solution making use of the asymptotic convergence rate. Reference 12 gives a discussion of several iterative schemes, recommending a composite method which combines overrelaxation to accelerate the convergence and underrelaxation to damp out any oscillations in the convergence history. However, for complex configurations, different sections of the matrix will, in general, converge at different rates which makes the use of global convergence factors unsuitable. A new convergence acceleration scheme has therefore been developed which can be applied after each iteration without the need to establish asymptotic convergence rates. This scheme has been found to give improved convergence in all the cases considered while also enabling converged solutions to be obtained for cases which are well outside the normal range of convergence of the basic Gauss-Siedel iterative scheme.

3495H 30

The scheme adopted is a relaxation method in which, after each iteration, an improved solution is defined as a linear combination of the earlier approximations. However, the relaxation coefficients are computed after each iteration in such a way that the residual error of the new approximation is minimized.

To implement the scheme described in the previous paragraph, it is necessary to define the residual vector after each iteration. For the linear normal velocity equations, this residual is defined by

$$RES_{K} = R - AX_{K}$$
 (2.8.7)

It is clearly undesirable to have to evaluate this expression after each iteration since this would involve  $(N^2)$  operations which is equivalent to an additional iteration. However, by separating the matrix A into its triangular parts, and applying Eqs. (2.8.5) and (2.8.6), the residual vector is given by

$$RES_{K} = RHS_{K} - RHS_{K-1}$$
 (2.8.8)

and this expression can be easily evaluated at the end of each iteration. The residual for the Kutta conditions can be evaluated by computing the trailing-edge velocities after each iteration. Substitution in Eq. (2.8.3) then gives a value for the Kutta residual for each unknown dipole strength.

Apart from the calculation of the residual vector, defined by Eq. (2.8.7), the convergence acceleration scheme presented here does not depend in any way on the details of the Gauss-Siedel iteration. The schemes are applied as two independent steps of the overall iterative procedure. In the following outline we will define RES $_K$  to be the residual vector, including both the normal velocity and the Kutta condition residuals after the K-th iteration corresponding to the solution vector  $X_K$ , which also includes both the source and the dipole unknowns.

Given a set of approximations to the solution,  $X_0$ ,  $X_1$ , ...,  $X_K$ , we can define a new approximation by

$$\chi' = \sum_{i=0}^{K} \chi_i f_i$$
 (2.8.9)

where  $f_0$ ,  $f_1$ , ...,  $f_k$  are the acceleration coefficients which are yet to be determined. In general, the first approximation,  $X_0$ , which is the starting solution to the iterative procedure, is taken to be the zero vector. Therefore, Eq. (2.8.9) defines a set of K independent approximations to the solution vector, and so it is convenient to constrain the acceleration coefficients so that

$$\sum_{i=0}^{K} f_i = 1$$
 (2.8.10)

It now follows from Eq. (2.8.7) that the new residual vector is given by

RES' = 
$$\sum_{i=0}^{K} RES_i f_i$$
 (2.8.11)

It should be noted that, while this equation is exact for the normal velocity residuals which satisfy a linear equation, it is only approximate for the nonlinear Kutta residuals. However, this approximation is consistent with the linearization applied in the solution of the Kutta condition, and it is a good approximation for this application.

As the coefficients  $f_i$  vary, Eq. (2.8.9) defines a family of approximations to the solution of both Eqs. (2.8.1) and (2.8.2) for which the corresponding residual is given by Eq. (2.8.11). In order to minimize the error for this new solution, a single scalar measure of the error is required. The sum of the squares of the components of the residual vector provides a suitable error measure. In matrix notation this quantity can be evaluated in terms of the norm of the residual vector which is defined by

$$||RES'||^2 = [RES']^T RES'$$
 (2.8.12)

where  $[RES']^T$  is the matrix transpose of RES'.

This equation defines a quadratic function of each of the variables  $f_i$ . Since this function is non-negative, it follows that its minimum value must occur at the point at which

$$\partial ||RES'||^2/\partial f_i = 0$$
 for  $i = 0, 1, ..., K-1$  (2.8.13)

This provides a set of K linear equations which, together with Eq. (2.8.10), can be used to determine the acceleration coefficients completely.

Full details of the derivation of this set of equations and their solution are given in Appendix M.

This acceleration scheme involves two principal computational tasks. The first is the calculation of the acceleration coefficients, which in turn involves the calculation of the scalar products between every pair of residual vectors. The second is the application of these coefficients to the calculation of an improved solution and its corresponding residual vector. Both of these tasks will involve on the order of (KN) operations while each iteration requires N<sup>2</sup> operations. Therefore, since K, the number of previous solutions, is very much less than N, the additional computation introduced by the acceleration scheme is small. However, it has been found to have a significant effect on the rate of convergence of the scheme, while also giving an improved stability enabling converged solutions to be obtained for cases which are well outside the normal range of convergence of the basic Gauss-Siedel iterative scheme.

## 3.1 General Description

The inlet procedure employs the above-described panel method to calculate fundamental flow solutions for the inlet which are then linearly combined to obtain the flow at any desired operating condition. Specifically, solutions may be obtained for any angle of attack or yaw, Mach number, and mass flow rate. The computational effort required to perform the combination for a particular operating condition is a small fraction of that required for the initial calculation of the fundamental solutions. Thus, solutions for any number of operating conditions may be obtained inexpensively, as needed, at any time after the fundamental solutions have been calculated.

The numerical efficiency of this inlet procedure is realized because the fundamental solutions are obtained for incompressible flow, and then combined and corrected for compressibility effects. A key element in this approach is an accurate and general compressibility correction that may be applied to the incompressible flow about the same inlet, as opposed to the standard Goethert procedure which requires a Mach-number-dependent stretched version of the inlet. The compressibility correction used is the Lieblein and Stockman method, Ref. 13, which is described in Appendix N. This procedure has been well verified by comparison with experimental data, Refs. 13-15. For internal flows it is effective even for supersonic flow without shocks, and it has been generalized to external flow about wings, Ref. 16.

From the beginning (Ref. 1) this work has had two principal aims: computational efficiency for arbitrary geometries, which is discussed above, and user orientation, which has been obtained principally by including a number of graphical output features. The main capabilities of the programs of Refs. 1 and 2 are surface streamline tracing and isoplotting of various flow quantities both on the surface and over cross sections. Both of these have been improved by providing the capability of drawing curves across section boundaries. That is, the panels may be grouped into logically independent but physically contiguous sections or networks, and the plotting routine can draw streamlines or

isocurves across these boundaries. A major new graphical feature is the portrayal of the surface or off-body velocity field by means of a set of vectors having the velocity magnitude and direction at all points. This type of picture has proven very useful in applications.

## 3.2 The Fundamental Flow Solutions

First, the definition of a flow solution must be described. In the present context these are incompressible flows. Every flow solution corresponds to a certain "onset flow" which is the flow incident to the body. In general the onset flow satisfies neither the normal-velocity boundary conditions nor the Kutta conditions. The source densities  $\sigma_j$  and the dipole derivatives  $B_k$  (bound vorticity strengths) are adjusted to satisfy these conditions. The most common onset flow is a uniform stream, but as will be seen, other onset flows are also necessary. For this reason, the onset flow vector at the panel control points is written  $\overline{V}_{0i}$  to show that it may vary from point to point. Then the velocity at the i-th control point is

$$\vec{v}_{i} = \sum_{j=1}^{N} \vec{v}_{i,j} \sigma_{j} + \sum_{k=1}^{L} \vec{v}_{i}^{(k)} B_{k} + \vec{v}_{oi}$$
 (3.2.1)

This replaces Eq. (2.7.1), and the method of Section 2.7 and Section 2.8 give the values of  $\sigma_j$  and  $B_k$  corresponding to that particular onset flow. When these values are inserted into Eq. (3.2.1) and the indicated summations performed, the resulting  $\exists t$  of  $\vec{V}_j$  is designated a flow solution.

The set of fundamental flow solutions that are superposed by the combination program to obtain flow about the inlet at arbitrarily prescribed operating conditions may be described most easily in terms of two types of flow. The first is flow about the inlet due to a unit freescream at prescribed angle of attack and yaw with no effort to control mass flow through the inlet. In the nonlifting methods of Refs. 1 and 2, there were always three such flows: zero angle of attack and yaw, 90° angle of attack, and 90° angle of yaw. In lifting cases, however, the latter two flows make no sense. If the inlet has a leading-edge slat, for some circumferential locations, the trailing edge is the upstream point of the airfoil section. The result can be nonconvergence

of the iterative solution. In the present program a number of angle-of-attack/ yaw combinations are input by the user. It is preferable to choose these combinations in the range where the user's interest ultimately will lie. The other type of solution is the static, for which the inlet ingests fluid and the flow is quiescent at infinity. The inlet methods of Refs. 1 and 2 use different mathematical devices to produce the static solution. Reference 1 uses a constant vorticity distribution over the inlet surface, as illustrated in Fig. 7a. This has some features in common with the surface vorticity used on the slats to generate lift, but is also has several differences. No Kutta condition is applied on the inlet, and no distribution of vorticity is solved for. Instead a single parameter, total vorticity strength, is adjusted to satisfy a single condition, mass flow through the inlet. If auxiliary inlets are present, the topology of the configuration does not permit use of surface vorticity. Accordingly, in the method of Ref. 2, the mechanism of the static solution is a single ring vortex located well downstream in the inlet, as shown in Fig. 7b. The strip vorticity option of Fig. 7a gives a superior static solution, and it is used in all cases except for the infrequently occurring one where an auxiliary inlet is present. In the very infrequent case where there are two independent mass flow rates, e.g. an "inlet within an inlet," the above mechanisms have to be applied to each inlet separately.

Because of the wide variety of cases to which the present method may be applied, some flexibility is necessary in the choice of fundamental flow solutions. For example, while the static solution has a sensible Kutta condition for an inlet with leading-edge slat, the same probably cannot be said for an inlet on a wing, where the static flow near the wing trailing edge is more-orless parallel to it. Similarly, the high inclination angles at which a slatted inlet can operate at high mass flow rates lead to the above-described difficulty for 90° if no mass flow control is exercised. Thus, in general the fundamental flow solutions should all contain combinations of an inclined freestream and a static condition. This is perfectly permissible as long as the flow solutions contain all the independent possibilities, e.g. at least two angles of attack, yaw, and mass flow rate.

3495H 36

#### 3.3 The Combination Program

The fundamental flow solutions and the body geometry are accessed by the combination program. At this stage also are input any off-body points and inlet cross-sections where the flow output is desired. A cross section is a panel network extending across the interior of the inlet. Flow quantities are computed at panel centers and a total mass flux for the cross section as a whole is evaluated. One cross section is designated the control station, and it is there that the mass flow condition is applied. In preparation for this, the average velocity at the control station  $\mathbb V$  is computed for each fundamental solution.

The flow condition input to the combination program consists of flow conditions at infinity and at the control station. The various possibilities are presented in Appendix 0. The key quantity in the combination is the equivalent incompressible velocity, which is denoted with a prime. In particular,  $V_{\infty}$  is the equivalent incompressible freestream velocity (Eq. (0.13)) and  $V_{\rm c}$  is the equivalent incompressible average velocity at the control station (Eq. (0.20)). In all cases V equals V multiplied by the local static-to-total density ratio, and the flow direction is unchanged.

In order to compute the combined flow for a given set of flow conditions, a number of the fundamental flows are combined linearly. In general, three linearly independent fundamental flows are required to satisfy the conditions at infinity while an additional static solution solution is required for each independent mass-flow condition. However, for flows without yaw, the number of fundamental flows required is reduced by one. In the fundamental solution mode, a number of user-specified fundamental solutions are obtained including at least one yaw solution if combined solutions with yaw will be required. The range of angles of attack and yaw specified should preferably span the complete range of combined solutions which will be required. When the combination program is run, the code will automatically select the closest linearly independent solutions to be used for the combination. This procedure is required by the nonlinearity in the potential flow solution which is introduced by the Kutta condition.

3495H 37

To illustrate the combination procedure, consider the case in which four fundamental solutions have been selected by the code. Let these individual solutions be denoted by the superscript m, and let  $a_m$  represent the unknown combination constants. The equivalent incompressible velocity for the combined flow is

$$\vec{V}_{i} = \sum_{m=1}^{4} a_{m} \vec{V}_{i}^{(m)}$$
 (3.3.1)

where the combination constants  $\mathbf{a}_{m}$  are initially unknown. Meeting the prescribed flow conditions at infinity and at the control station requires

$$\int_{\mathbf{m}=1}^{4} \mathbf{a}_{\mathbf{m}} \overline{\mathbf{V}}_{\infty}^{(\mathbf{m})} = \overline{\mathbf{V}}_{\infty}^{i}$$

$$\int_{\mathbf{m}=1}^{4} \mathbf{a}_{\mathbf{m}} \overline{\mathbf{V}}_{\infty}^{(\mathbf{m})} = \overline{\mathbf{V}}_{\mathbf{c}}^{i}$$
(3.3.2)

This defines four equations (one vector, one scalar) for the four unknown  $\mathbf{a}_{\mathrm{H}}$ . Once computed they are inserted in Eq. (3.3.1) to obtain  $\hat{\mathbf{v}}_{\mathrm{i}}$ , which is used in the compressibility correction (Appendix N).

#### 4.0 CALCULATED RESULTS

The method described here will be illustrated using three separate geometrical configurations. The first two cases represent complex three-dimensional flows involving inlets with lifting slats on the leading edge of the cowl. The third configuration is a simple nonlifting axisymmetric inlet which illustrates some improvement in the computed results, as compared with the nonlifting method presented in Ref. 2.

The first geometry discussed is an axisymmetric inlet with a centerbody and leading-edge slat shown in Fig. 9. The cross-section shown in Fig. 9b illustrates the relationship of the leading-edge slat to the cowl. The ability of colored shaded graphics to portray complex three-dimensional bodies is illustrated in Figs. 9c and 9d. Figure 10 shows a comparison of the current method with the axisymmetric method of Ref. 18 for a combined flow along the axis of the inlet with an average velocity on the fan face, x = 2.63, of twice the freestream. A surface vorticity distribution on the cowl was used to generate the static solution in both the axisymmetric and the three-dimensional calculations. The pressure distributions on the cowl and the centerbody, shown in Fig. 10a, agree very closely while Fig. 10b shows that on the slat there is a small difference in the leading-edge pressure peak when compared with the axisymmetric result.

The remaining results for this configuration are presented for three incompressible flow conditions. The first is a pure static flow with no flow at infinity, and the second is a "pure freestream" solution at zero angles of attack and yaw, with no surface vorticity on the cowl. The third solution is a combined flow at 40° angle of attack, zero yaw and an average fan face velocity twice the freestream velocity. Figures II-13 illustrate the flowfield across the inlet for these three flow conditions, the vectors drawn being proportional to the local flow velocity. The flowfield velocity vectors are computed in the plane through the inlet axis tilted 15° from the center plane of the inlet. The boundary lines shown on these figures represent the boundaries of the off-body flowfield rakes used to compute the flowfield rather than the exact aerodynamic surfaces. For clarity, the approximate body locations are shaded.

3495H

The static case shown in Fig. 11 illustrates the rapid decrease in velocity magnitude ahead of the inlet, while the expanded view of the slat region reveals a local flow environment similar to that of a conventional flap with the upstream stagnation point occurring in the vicinity of the slat leading edge. The axisymmetric freestream condition shown in Fig. 12 gives a more unconventional flowfield. In this case the "upstream" attachment line on the slat occurs on the forward-facing surface of the slat closer to the trailing edge than the leading edge, while the attachment line on the cowl occurs virtually under the leading edge of the slat. Figure 13 illustrates a combined flow in which the freestream is at 40° to the inlet axis while the internal velocity is twice the freestream. In this case the flow ahead of the inlet and on the centerbody is very different than that shown in Fig. 12. However, in the vicinity of the slat, the flowfield is qualitatively the same.

Figures 14-16 present the computed flowfield isobars for the same three flow conditions in the same off-body plane. Figure 14 again shows the conventional nature of the slat flowfield in the static case with the rapid pressure variation occurring as the flow goes around the inner lip of the cowl. On the other hand, Figs. 15 and 16 show the extreme pressure gradients occurring on the slat where the flow turns around the leading edge.

The second configuration considered is essentially the previous configuration but further complicated by the addition of another leading-edge slat, this time only a part-circumference slat, however. A section through the lower half of the configuration is shown in Fig. 17. Results are presented for this configuration at a combined solution of zero yaw, 40° angle of attack and fan face velocity of twice freestream.

Figure 18 compares the computed pressure distribution, plotted against radial distance, on the main slat at three different circumferential locations with the corresponding results computed for the single slat configuration. Near the top of the inlet the presence of the auxiliary slat does not have a large effect on the pressure. However, in the z=0 plane there is a significant reduction in the leading-edge pressure peak, while close to the bottom of the inlet the second slat greatly reduces both the leading and trailing edge

pressure peaks on the main slat. Figure 19 shows the surface velocity distribution on both the inner and outer cowl surfaces for the same flow conditions. It can be seen from Fig. 19b that the nonaxial nature of the flow persists throughout even the interior of the inlet. This is presumably due to the presence of the ingested tip vortices trailing from each end of the part-circumferential slat which will induce some swirl into the internal flow.

The third configuration considered is a simple 72-panel (on the shalf-body") round inlet, as shown in Fig. 20. This simple geometry was used to demonstrate the improvement gained in the new source derivative fitting algorithm in use in the present code. Figures 21a and b present the variation in peak Cp versus theta (measured circumferentially), and the variation in Cp versus axial distance at a fixed theta value ( $\theta = 75^{\circ}$ ), respectively. The results are compared with those obtained by the method described in Ref. 2 in which a "least-squares" fitting procedure was used to compute the source derivative effects. The present approach, described in Section 2.5.1, demonstrates the improved level of axisymmetry which is obtained by the new formulation.

## 5.0 INPUT INSTRUCTIONS FOR THE HIGHER-ORDER POTENTIAL FLOW PROGRAM (DF12)

#### 5.1 Introduction to the System

The computer code is actually a collection of pre- and post-processing programs grouped around the potential-flow program. It can be thought of as a system of programs designed to "talk" to each other via saved datasets. These programs are:

- 1. PRE-PROCESSOR: parametric cubics patch fitting of 3-D coordinate data.
- 2. FUNDAMENTAL POTENTIAL FLOW SOLVER: (DF12: Mode 1).
- 3. COMBINATION OF FUNDAMENTAL FLOWS (DF12: Mode 2).
- 4. POST-PROCESSOR: ISOPLOT plots iso-contours (on- or off-body).
- 5. POST-PROCESSOR: VECPLOT plots velocity vectors (on- or off-body).
- 6. POST-PROCESSOR: TRACE-ON calculates streamlines (on-body only).

Operation of these codes is facilitated by a set of interactive "submit CLISTS" and associated FORTRAN programs. A single CLIST controls the operation of programs 1, 2 and 3; separate CLISTS exist for each of programs 4, 5 and 6. While all these CLISTS have been designed for an IBM mainframe running TSO in an MVS/XA environment, similar interactive submittal procedures can easily be written for other systems to accomplish the same purpose, viz. simplify the user's job of running cases and enhance his ability to investigate both the quality and significance of the computed results.

## 5.2 <u>Discussion of the Individual Programs</u>

Since several of the programs can "communicate" with each other via saved datasets, a great deal of flexibility exists concerning the sequence in which the programs may be executed. For example, Program 1 can talk to either Programs 2 or 3, but is not always required to run Programs 2 or 3. Programs 4, 5 and 6 can talk to Programs 2 or 3, but only if the appropriate dataset from 2 or 3 was saved. To understand the possible interactions between programs, it is best to consider each one separately, first.

#### 5.2.1 The PRE-PROCESSOR: PC-PATCH

This program is designed to take a user-defined set of 3-D Cartesian coordinates and fit a set of parametric bi-cubic patches to the implied surface. The input consists of a formatted "card-image" (i.e. 80-column, fixed block) dataset which contains the corner points of panels distributed on the surface of the body about which the flow is to be calculated (see Appendix P). The format of this data is:

| cc 1-10<br>cc 11-20<br>cc 21-30 | Y     | Cartesian coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cc 31                           | ISTAT | 0 = this point is on the same N-line as previous point 1 = this point starts a new N-line 2 = this point starts a new section                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cc 32                           | LABEL | <pre>0 = this is an NLIF (nonlifting) section 1 = this is a LIFT (lifting) section (i.e. has Kutta condition)     (Note: all LIFT sections, if any, must precede all other section types.) 2 = this is a WAKE section (all WAKE sections, if any, must come last on the input geometry dataset, after all other LABEL=0,1,3 and 4 sections) 3 = this is a DBLT (doublet) section 4 = this is a SRFV (surface vorticity) section (Note: may not use both DBLT and SRFV sections at the same time in a Mode I case.) 5 = this is a FLUX section (allowed as input to Mode 2 cases only)</pre> |
| cc 33                           | MCURY | <pre>0 = automatic M-line curvature selection (curved unless</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Note that LABEL and MCURV only apply to ISTAT=2 points, i.e. they need be entered only once on a section. (For a discussion of the limits on the numbers of points, panels, etc., see Section 6.2.4, Program Limits.)

These panel coordinate data are "fit" with parametric cubic patches (see Appendix B) and written to an output dataset hereafter referred to as a "PCU"-dataset (Parametric Cubics Unformatted). The PCU dataset serves as a true

3495H

surface definition for the higher-order potential-flow solver, but it is not required that the pre-processor supplied with this system be used to generate that PCU-dataset: any "PC"-fitting program may be used, as long as the following PCU-"format" is observed:

| Record #1:   | IFORM                                 | A single integer (use "1") specifying the PCU-<br>format                                                                                                                                                          |
|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Record #2:   | NSECT<br>NPATT<br>NTYPE(6)            | Number of SECTIONS (see Section 2.3) of data Total number of patches on the entire dataset 6 integers indicating the number of each type of SECTION in the following order: #NLIF, #LIFT,                         |
|              | HEAD(9)                               | #WAKE, #DBLT, #SRFV, #FLUX<br>9-word (4 bytes/word) alphanumeric title                                                                                                                                            |
| NSECT sets:  |                                       |                                                                                                                                                                                                                   |
| Record #3:   | ISECT<br>HPAT<br>HU<br>HV<br>HEAD(15) | Running SECTION counter Number of PC-patches on this section (=NU x NV) Number of patches in the "N-line" direction Number of patches in the "N-line" direction 15-word (4 bytes/word) alphanumeric section title |
| Record #4:   | TMAT (12)                             | 12 double-precision word (8 bytes/word) trans-<br>formation matrix (not presently used)                                                                                                                           |
| Record #5:   | P(48)                                 | 48 double-precision word (8 bytes/word) PC-patch coefficients in GEOMETRIC form; repeated for all NPAT patches on this SECTION                                                                                    |
| Record #(4+N | PAT)                                  |                                                                                                                                                                                                                   |

Note that the PRE-PROCESSOR program may be used to generate the PCU input data-set for both the on-body data (used in Mode 1, described below) and the flux-section data (optionally used in Mode 2, also described below). The PCU data-set created by this PRE-PROCESSOR is relatively inexpensive to create and is therefore normally discarded by the potential flow solver. This is true unless the potential flow solution is being saved for a Mode 2 case; in the latter situation, the PCU dataset is copied into the saved fundamental solution data-set created by Mode 1 to ensure that Mode 2 is operating on a consistent geometry base.

## 5.2.2 DF12, Mode 1: FUNDAMENTAL POTENTIAL FLOW SOLVER

This program forms the heart of the system in that the fundamental flows are generally the most complex and expensive part of the solution and form the

basis from which any combined solutions are obtained. The input to this program consists of a PCU-dataset (described above, in Section 5.2.1) on unit 1, and a formatted card-image dataset which contains some simple control flags on unit 5. The format of the control flags dataset is:

```
Record #1:
```

```
cc 1-72 TITLE(I), I=1,18 Alphanumeric run description
```

cc 73 MODE A single integer indicating the mode (1)

#### Remaining records (as needed) in NAMELIST/Z/ format:

AREF Reference area (use semi-area if NSYM=1) (default: 1.0)

BOY2 Reference semispan (default: 1.0)

CREF Reference chord length (default: 1.0)

ORIGIN(3) Moment reference center (X,Y, and Z; default: 0.,0.,0.)

IAUTOW 0 = user-input wake

1 = automatic trailing-edge bisectors

2 = automatic parallel to x-axis

(default: 1)

ICOMBO 0 = do not save data for a possible Mode 2 combination case

] = yes, save data

(default: 0)

IDEBUG 0 = print standard set of input flags

1 = print expanded set of input flags (for debugging purposes)

(default: 0)

IFUNDP 0 = no fundamental solution printout

1 = minimum fundamental solution printout

2 = full fundamental solution printout

(default: 2)

IPCV 0 = constant chordwise vorticity distribution

1 = parabolic chordwise vorticity distribution

(default: 0)

IPR132 0 = small print size (164 columns, 89 lines per page)

1 = large print size (132 columns, 60 lines per page)

(default: 0)

IPY 0 = do not save P/V (pressure/velocity) dataset

1 = save P/V dataset for possible use by ISOPLOT. VECPLOT

and/or TRACE-ON

(default: 0)

IQWIK 0 = do not save "QWIKPLOT"-type output dataset

1 = save "QWIKPLOT" dataset (see below)

(default: 0)

3495H

QWIKPLOT output dataset is similar to a P/V dataset in that the data is compacted into unformatted (binary) form. ISOPLOT, VECPLOT, and TRACE-ON all require a P/V dataset to execute; the QWIKPLOT dataset is organized around the concept of "strings" of data, where every record was created in the form: WRITE(IUNIT)VNAME, N, (Q(I), I=I, N), where VNAME is a double precision alphanumeric string identifier (8 bytes) and Q(I) is the string of data. An inhouse plotting program (called, not surprisingly, "QWIKPLOT") was written to read QWIKPLOT datasets allowing rapid and easy comparisons of results of many CFD codes, and/or test data.

O = higher-order solution l = lower-order simulation (default: 0)

NSYM 0 = no symmetry 1 = symmetric about Y=0 plane (default: 1)

ALPHA Freestream angle-of-attack, degrees (no default; may have up to 20 values)

Freestream angle-of-yaw (default: 0; must have a value for each ALPHA value specified)
(Warning: Cannot use nonzero BETA if NSYM=1.)

IEXTRA Strip numbers of "extra-strips" (see Section 2.6.4), if any; these count consecutive strips of LIFT sections only, which, as mentioned earlier, if present, must be the first sections of the input geometry dataset.

The 72-panel, simple round inlet half-body, drawn with its image in Fig. 20, is supplied along with the program source code as a check case. The coordinates for this case are shown in Fig. 22. A sample execution of the interactive submit program for a Mode 1 execution of this check case is shown in Fig. 23. If the submit program is not used, an input dataset of the form shown in Fig. 24(a) must be created by the user. The JCL produced by the submit program to execute this Mode 1 check case is shown in Fig. 24(b).

The output from the MODE 1 execution of this test case is shown in Fig. 25. It is basically self-explanatory with the following exceptions:

P,Q,R the curvature quantities as used in the paraboloidal panel definition:  $\zeta = P\xi^2 + 20\xi\eta + R\eta^2$ 

SIGMA the source density value at the control point of the panel

٧N the net normal velocity on a panel the total velocity magnitude:  $v_T = \sqrt{2 + v_V^2 + v_V^2}$ VT CP the pressure coefficient: INCOMPRESSIBLE:  $Cp = 1 - (V_T/V_{ref})^2$ COMPRESSIBLE:  $Cp = (p - p_{ref})/q_{ref}$ the "lift coefficient": L/qAref CL CD the "drag coefficient": D/qAref **CSF** the "sideforce coefficient": Fy/gAref (Note: Fy is the force in the Y-direction) the "pitching moment coefficient": My/qArefCref CPITCH the "rolling moment coefficient": Mx/qArefbref CROLL CYAW the "yawing moment coefficient": Mz/qArefbref where the user-input reference area (which should be the "half-**Tref** area" if MSYM=1) the user-input reference span (which should be the semispan if bref the user-input reference chord length Cref the dynamic pressure, pvfef/2 q L and D measured in the lift and drag direction the forces and moments (integrated over the input panels, only, i.e. not over image panels created if NSYM=1) along and about the Cartesian axes. ETA Y/bref, where Y is taken as that of the first control point on the strip **ASTRIP** projected (into the X-Y plane) planform area of a lifting strip SECTCL, SECTCD local strip values of L/qAstrip and D/qAstrip

CIRCULTN

satisfy the Kutta condition.

the computed circulation value of the lifting strip used to

This program permits the user to combine the fundamental flows (from a MODE I execution) to obtain desired mass flow values (typically within an inlet). The combination constants required to obtain the user-defined mass flow values are obtained automatically by the program when the user supplies a "FLUX" section at the place where the mass flow rates are specified. The cost of generating the automatic combination constants varies linearly with the number of panels the user has on his FLUX-section dataset, and therefore may equal or even exceed the cost of the Mode I solution, although this is typically not the case. Optionally, the user may simply input these combination constants himself, and thus define his own combination case (perhaps using combination constants obtained from an earlier Mode 2 run).

Since the fundamental flow solver was designed to handle geometries which contain lifting leading-edge devices, such as those shown in Figs. 9 and 17, the program logic which satisfies the Kutta condition made it necessary to have the freestream fundamental flows include some suction effects as part of the standard set of freestream onset fundamental flows. As a result, in order for the user to obtain pure freestream onset flows (i.e. without any suction effects), a CC = -1.0 may be used. Note also that up to 5 suction fundamental flows may be generated in a Mode 1 case, requiring, therefore, an equal number of flux-setting and/or CC-values to be specified in Mode 2. Furthermore, the number of flux-setting conditions specified may not exceed the number of FLUX sections that are input, although the number of FLUX sections may indeed exceed the number of suction solutions available from Mode 1; this latter case is the typical one wherein a number of additional FLUX sections are included in order to user VECPLOT and/or ISOPLOT to survey the off-body flowfield.

Since the compressibility correction employed by the present program is the Lieblein-Stockman correction which is an "after-the-fact" type of correction (unlike, say, the more common Goethert correction which solves a different potential-flow problem for each freestream Mach number), multiple Mach number results may be obtained from a single Mode 1 set of fundamental solutions.

Input for Mode 2 consists of the saved fundamental solution dataset from a Mode 1 case (created when ICOMBO=1), plus a PCU-dataset containing FLUX sections (if any), plus a card-image flags dataset, which differs according to 3495H

whether COMPRS=9 or 1. Consider first an incompressible Mode 2 case (i.e. COMPRS=0):

#### Record #1:

cc 1-72: TITLE(I), I=1, 18 Alphanumeric run description

cc 73: MODE A single integer indicating the mode (2) (no default)

#### Remaining records (as needed) in NAMELIST/Y/ format:

COMPRS 0 = incompressible flow

1 = compressible flow (Lieblein-Stockman correction)

(default = 0)

**IOFF** 0 = no off-body points

1 = off-body points input on a separate dataset X,Y,Z 3F10. (Do not confuse this with FLUX sections which are M  $\times$  M grids of points which produce  $(M-1) \times (M-1)$  panels: off-body points need have no organization into M x M arids).

(default = 0)

IPR132 0 = small print size (164 columns, 89 lines per page)

1 = large print size (132 columns, 60 lines per page)

(default = 0)

IPV 0 = do not save on-body P/V dataset

1 = save on-body P/V dataset for optional later use by

ISOPLOT, VECPLOT, and/or TRACE-ON (default = 0)

JPY 0 = do not save FLUX-section P/V dataset

I = save FLUX-section P/V dataset for optional later use by

ISOPLOT, VECPLOT, and/or TRACE-ON

(default = 0)

0 = do not save "QWIKPLOY"-type output dataset IOWIK

1 = save "OWIKPLOT"-iype output dataset

(default = 0)

(For explanation of format, see Section 5.2.2 on "IQWIK".)

**NCOMB** Number of combination cases to be calculated NCOMB values of

ALPHAC, BETAC, VINF, VREF, etc. must be specified. (<20; default: 1)

ALPHAC. Requested net "combined" angles of attack and yaw (in degrees)

to be BETAC

achieved.
(Note: The program automatically selects appropriate combinations of the available fundamental flows; however, the user cannot request "impossible" combinations, e.g. if all fundamental flows were run with BETA=0, then all BETAC values must

also be 0.)
(defaults: ALPHAC has none, BETAC defaults to 0)

VINF Freestream speed (default: 1.0)

VREF Reference speed for Cp calculation. If COMPRS=1; then VREF is used for the Mach number correction. (default: VINF but, if VINF=0 also, then VREF is set to 1.)

VC(ICOMB,I) Requested average normal flux velocity, referring to the I-th flux-section, for combination solution number ICOMB (of NCOMB). (no default; for COMPRS=0, either VC or CC must be input for each suction fundamental flow generated in Mode 1)

CC(ICOMB,I) Designated combination constant for the I-th SUCTION fundamental solution. (default: see YC, above)

A sample execution of the interactive TSO submit program for a MODE 2 incompressible case is shown in Fig. 26. If the submit program is not used, an input dataset such as that shown in Fig. 27(a) is required to accomplish the same program execution. The JCL produced by the submit program to execute this Mode 2 check case is shown in Fig. 27(b).

The output from MODE 2, shown for the 72-panel inlet case in Fig. 28, was designed to be self-explanatory and differs significantly from that of MODE 1 in only two areas:

- The page titled "FLOCMB. FLOW COMBINATION MATRIX DATA" contains the details of the automatic computation of the combination constants, which are labeled "CC."
- For compressible cases (COMPRS=1), an extra column of the local Mach number, labeled MACH, is also shown on the output sheets.

The input flags for the compressible case (COMPRS=1) differ only slightly from the incompressible case. In particular, the freestream pressure (total or static) and freestream temperature (total or static) must be supplied. In

addition, the user is given the option of specifying either the freestream speed (VINF) or the freestream Mach number (MINF). The number of options for specifying the flux is expanded to include average flux Mach number (MC) or average weight flow rate (WC). Finally, the Lieblein-Stockman correction also makes use of an incompressible reference velocity (VIBAR) which the user may optionally control.

#### 5.2.4 DF12 Program Limits

The following program limits and guidelines must be met by the user for  $\underline{\mathsf{Mode}\ 1}$ :

- Maximum total # panels: 2000 (this includes WAKE panels, extra-strip panels (if any), etc.)
- Maximum total # sections: 100 (includes WAKE sections, etc.)
- 3. Maximum total # strips: 300 (includes all sections)
- 4. Maximum # lifting strips: 100 (includes only LIFT and SRFV strips, and "extra" strips (if any))
- Maximum # DBLT sections: 5 (see also 11 below)
- Maximum # SRFV sections: 5 (see also 11 below)
- 7. All LIFT sections (if any) must <u>precede</u> all other sections in the input geometry dataset.
- 8. All WAKE sections (if any) must <u>follow</u> all other sections in the input geometry dataset.
- The order of WAKE sections (if any) must coincide with the order of LIFT sections to which the WAKE sections correspond.
- 10. No N-line on any LIFT section may be of zero length.
- 11. DBLT and SRFV sections may not both be input at the same time.
- 12. Nonzero BETA cannot be requested if NSYM=1.

#### For Mode 2:

- 13. Only FLUX sections and/or off-body points may be input (along with the control flags, of course).
- 14. Maximum total # FLUX panels plus off-body points: 2000

- 15. The maximum total # FLUX sections: 20
- 16. Total # of (VC+MC+WC+CC) conditions specified < (#DBLT + #SRFV) sections that were input for Mode 1.
- 17. "Impossible" flow combinations should not be requested, e.g. if Mode 1 was run with only one angle of attack, then Mode 2 cannot possibly "combine" the Mode 1 fundamental flows to achieve any other angle of attack except the one specified in Mode 1.
- 5.2.5 Post-Processing Program: VECPLOT

Input to the velocity vector plotting program, VECPLOT, consists of: (1) an unformatted P/V (pressure/velocity) dataset (either on-body or off-body, i.e. FLUX), and (2) a unit 5 card-image dataset. The "format" of the P/V dataset (which is created automatically for on-body results of MODE 1 (if IPV=1), and either on-body (if IPV=1) and/or FLUX sections (if JPV=1) for MODE 2) is shown in Fig. 30.

The unit 5 card image dataset for VECPLOT is in NAMELIST /IMPUT/ format:

IDEBUG

0 = (default) normal execution

1 = generate debug print

**VREF** 

Value used to scale velocities before plotting vectors

(0.0 + draw all vectors with unit length)

RYLENG

Length of a unit vector in rasters (note that page width, for

example, is always 4000 rasters)

NVIEWS

Number of "user-defined" views

(default: NVIEWS=0)

KVIEWS(I)

Where KVIEWS define up to 10 "standard-views"

1 = side view

2 = top

3 = bottom

4 = inside

5 = front

6 = rear

7 = lower outside front 45°

8 = upper outside front 45°

9 = lower outside rear 45°

10 = upper outside rear 45°

If KVIEKS(1)=0, then all 10 views are drawn

(default: KVIEWS(1)=0)

KSECT Section numbers for which plots will be drawn. Up to 40 sections can be selected. If no values specified, then all sections will be drawn.

If NVIEWS>0, then NVIEWS additional cards are required:

defining rotation angles (see explanation in TSO submit procedure, Fig. 26) for each "user-defined" view.

A sample execution of the interactive YECPLOT submit CLIST is shown as part of the DF12 Mode 2 TS0 submit in Fig. 26. The JCL stream that was produced is shown in Fig. 27(c). A sample output of YECPLOT is shown in Fig. 29.

## 5.2.6 Post-Processing Program: ISOPLOT

Input to the isogram plotting program ISOPLOT, consists of: (1) an unformatted P/V (pressure/velocity) dataset from MODE 1 or MODE 2, and (2) a unit 5 card-image dataset containing control flags written in NAMELIST/INPUT/ format:

IDEBUG 0 = (default) normal execution 1 = generate debug print

ISCAL Scale definition used to set Cp minimum and increment values:

| ISCAL        | Cpain       | ΔCp       |
|--------------|-------------|-----------|
| 1            | -1.0        | 0.02      |
| 2            | -3.0        | 0.05      |
| 3            | <b>-7.0</b> | 0.10      |
| 4            | -15.0       | 0.20      |
| 5            | No limit    | Automatic |
| (default: 5) |             |           |

(deraurt:

IPLOTS

Plot selection flag:
0 = generate all plots
1 = Cp plots only

2 = delta-star plots only 3 = skin-friction plots only

NVIEWS Number of "user-defined" views (up to 9 views can be defined)

(default: NVIEWS=0)

KVIEWS(I)

Define up to 10 "standard-views"

1 = side view

2 = top

 $\bar{3} = bottom$ 

4 = inside

5 = front

6 = rear

7 = lower outside front 45°

8 = upper outside front 45°

9 = lower outside rear 45°

10 = upper outside rear 45°

If KVIEWS(1) = 0, then all 10 views are drawn

(default: KVIEWS(1)=0)

**KSECT** 

Section numbers for which plots will be drawn. Up to 40 sections can be selected. If no values specified, then all sections will be drawn.

If NVIEWS>O, then NVIEWS additional cards are required:

PSI(I), THET(I), PHI(I) (3F10.6)

defining rotation angles for each "user-defined" view.

A sample execution of the interactive ISOPLOT submit CLIST is shown as part of the DF12 Mode 2 TSO submit in Fig. 26. The JCL stream that was produced is shown in Fig. 27(d). A sample output of the ISOPLOT program is shown in Fig. 29.

5.2.7 Post-Processing Program: TRACE-ON

Unlike VECPLOT and ISOPLOT, this is an interactive (on TSO) surface streamline calculating program which requires as input a P/V (pressure/velocity) dataset from MODE 1 or MODE 2 and user responses to the interactive questions. In using this program, one area which the user must understand is the method of telling the program where to "start" streamlines. For the purposes of TRACE-ON, the body surface is assumed to consist of a number of SECTIONS, each of which consists of an NU by NV grid of data, where NU and NV represent the number of points along N-lines of data, and M-lines of data, respectively, of a given SECTION. Note that both MODE 1 and MODE 2 extrapolate the computed potential flow velocity data to the edges of the input SECTIONS. This means that there are more data values in the P/V dataset than panels printed on the MODE 1 and MODE 2 output sheets. For example, say the user inputs a section

with M "chordwise" points on each of N N-lines (see Fig. 31); the number of panels produced in the potential flow program is (M-1) x (N-1). But the number of data points on the P/V dataset is (M+1) x (N+1) since the data is extrapolated "chordwise" (i.e. in the N-line direction) at the beginning and end of the strip of panels, and "spanwise" to the "inboard" and "outboard" edges of the section. All the data points may therefore be described by parametric variables in the N-line and M-line directions; these are referred to, herein, by U and V, respectively. Thus the fist control point of the potential flow program is called U=2., V=2., (not 1.,1. since 1.,1. would refer to the corner of the section). The second control point (along the same strip of panels in the section) would be U=3., V=2., and so on, as shown in the figure.

A sample execution of the TRACE-ON program is shown in Fig. 32, and a plot of the calculated streamlines are shown in Fig. 33.

3495H 55

#### 6.0 REFERENCES

- Hess, J.L. and Stockman, N.O.: An Efficient User-Oriented Method for Calculating Compressible Flow about Three-Dimensional Inlets. AIAA Paper No. 79-0081, Jan. 1979.
- 2. Hess, J.L. and Friedman, D.M.: Analysis of Complex Inlet Configurations Using a Higher-Order Panel Method. AIAA Paper No. 83-1823, Jul. 1983.
- Hess, J.L. and Friedman, D.M.: An Improved Higher-Order Panel Method for Three-Dimensional Lifting Flow. Rept. No. NADC-79277-60, Dec. 1981.
- Hess, J.L.: A Higher-Order Method for Three-Dimensional Potential Flow. Rept. No. NADC 77166-30, Jun. 1979.
- Hess, J.L.: Calculation of Potential Flow About Arbitrary Lifting Bodies.
   McDonnell Bouglas Rept. No. J5671, Oct. 1972.
- Hargason, R.J., et al: Subsonic Panel Methods A Comparison of Several Production Codes. AIAA Paper No. 85-280, Jan. 1985.
- Maskew, B.: Prediction of Subsonic Characteristics A Case for Low-Order Panel Methods. AIAA Paper No. 81-0252, Jan. 1981.
- 8. Clark, R.W.: A New Iterative Matrix Solution Procedure for Three-Dimensional Panel Methods. AIAA Paper No. 85-0176, Jan. 1985.
- Hess, J. L. and Smith, A.M.O.: Calculation of Potential Flow About Arbitrary Bodies. Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, New York, 1966.
- 10. Yarga, R.S.: Matrix Interactive Analysis. Academic Press, New York, 1961.

- 11. Labrujere, T.E., Loeve, W. and Slooff, J.W.: An Approximate Method for the Calculation of the Pressure Distribution of Wing-Body Combinations at Subcritical Speeds. AGARD Conference Proceedings No. 71, Aerodynamic Interference, Wash. D.C., Sept. 1971.
- 12. Bratkovich, A. and Marshall, F.A.: Iterative Techniques for the Solution of Large Linear Systems in Computational Aerodynamics. J. Aircraft, Vol. 12, No. 2, Feb. 1975.
- 13. Lieblein, S. and Stockman, N.O.: Compressibility Correction for Internal Flow Solutions. J. of Acft, Vol. 9, No. 4, Apr. 1972.
- Albers, J.A. and Stockman, N.O.: Calculation Procedures for Potential and Viscous Flow Solutions for Engine Inlets. Trans. of ASME, J. of Engg. Power. Jan. 1975.
- 15. Albers, J.A.: Theoretical and Experimental Internal Flow Characteristics of a 13.97-Centimeter-Diameter Inlet at STOL Takeoff and Approach Conditions. NASA TN D-7185, Mar. 1973.
- 16. Dietrich, D.A., Oehler, S.L. and Stockman, N.O.: Compressible Flow Analysis About Three-Dimensional Wing Surfaces Using a Combination Technique. AIAA Paper No. 83-0183, Jan. 1983.
- 17. Hess, J.L.: Higher-Order Numerical Solution of the Integral Equation for the Two-Dimensional Neumann Problem. Computer Methods in Applied Mechanics and Engineering, Vol. 2, No. 1, Feb. 1973.
- 18. Hess, J.L.: Improved Solution for Potential Flow About Arbitrary Axisymmetric Bodies by Use of a Higher-Order Surface-Source Method. Computer Methods in Applied Mechanics and Engineering, Vol. 5, No. 3, May 1975.
- 19. Peters, G.J.: Interactive Computer Graphics Application of the Parametric Bicubic Surface to Engineering Design Problems. Computer Aided Geometric Design (Eds.: Barnhill, R.E. and Reisenfeld, R.F.), Academic Press, New York, 1974.

3495H

- 20. Struik, D.J.: Differential Geometry. Addison-Wesley, Cambridge, 1950.
- 21. Semple, W.G.: A Note on the Relationship of the Influences of Sources and Vortices in Incompressible and Linearized Compressible Flow. British Aircraft Corp. (Military Aircraft Division) Rept. No. Ae/A/541, Oct. 1977.

## ORIGINAL PAGE IS OF POOR QUALITY

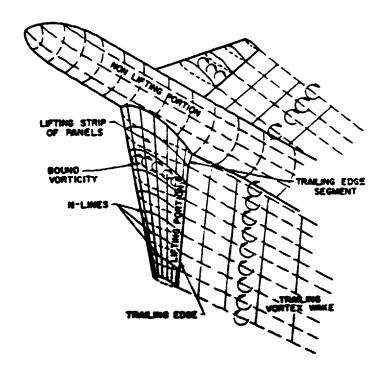



Figure 1. Representation of a three-dimensional lifting configuration.

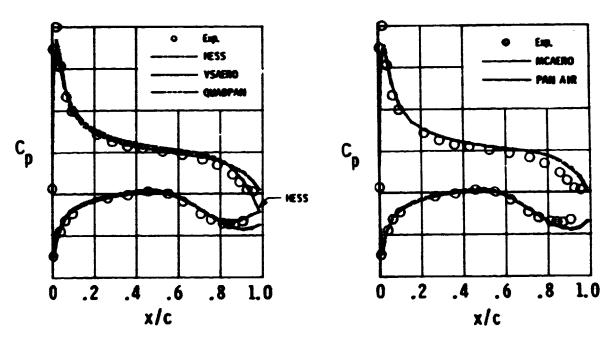



Figure 2. Chordwise pressure distribution for the EET configuration,  $\alpha$  = 0.55.  $\eta$  = 4.31°, (a) low order methods. (b) high-order methods.

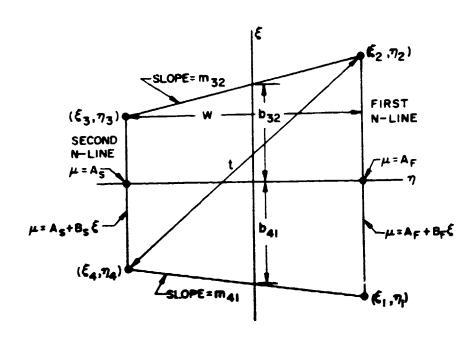



Figure 3. A plane trapezoidal panel.

|                                           | (ξ <sub>02</sub> . η <sub>02</sub> )<br>•<br>2 |                                        |
|-------------------------------------------|------------------------------------------------|----------------------------------------|
| (ε <sub>03</sub> . η <sub>03</sub> )<br>• | EE00 - 100)  Q  PANEL IN QUESTION  (1,1)       | (ε <sub>04</sub> , η <sub>04</sub> ) 4 |
|                                           | (ε <sub>01</sub> , η <sub>01</sub> ) • 1       |                                        |
| STRIP K-1                                 | STRIP K                                        | STRIP, K+1                             |

Figure 4. Adjacent panels used in numerical source density derivatives.

# ORIGINAL PAGE IS OF POOR QUALITY

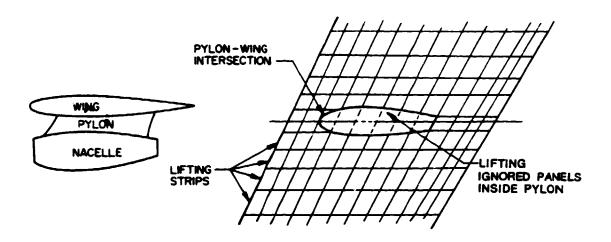



Figure 5. Use of ignored panels.

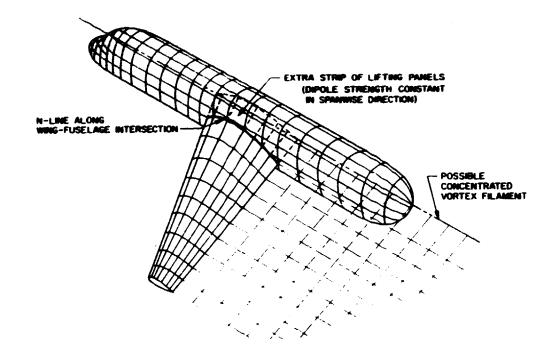
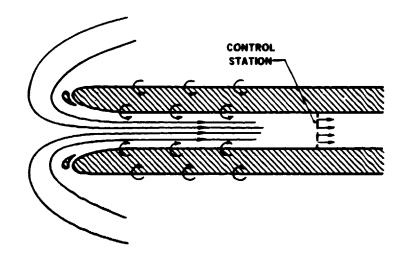
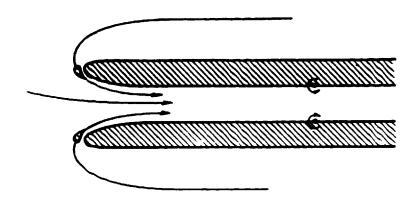





Figure 6. Use of an extra strip.



(a)



(b)

Figure 7. Two methods for obtaining the static fundamental solution, (a) surface vorticity, (b) ring vortex.

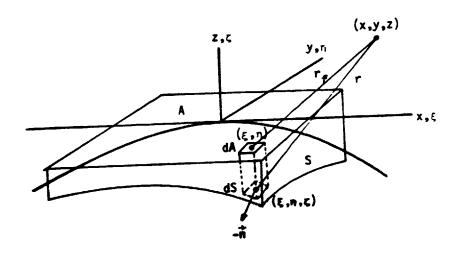



Figure 8. A general curved surface panel and its projection in the tangent plane.

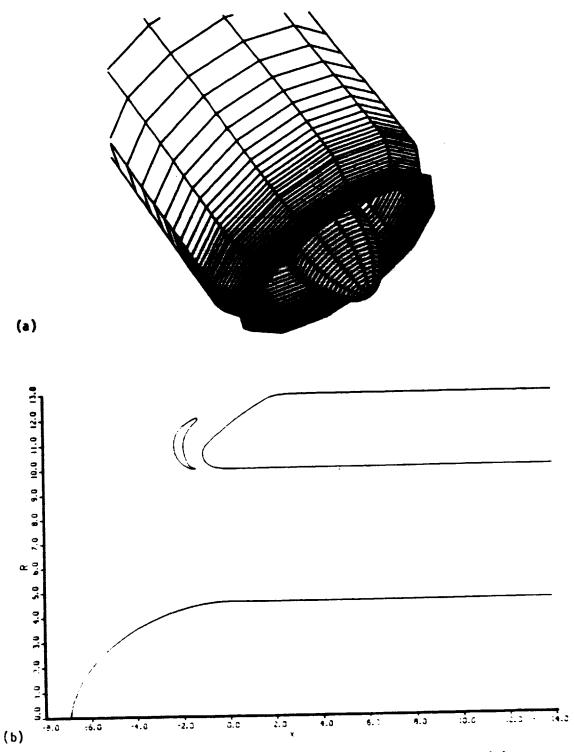



Figure 9. Circular Inlet with Leading-Edge Slat and Centerbody. (a) Front View. (b) Cross-Section through Upper Half of Inlet.

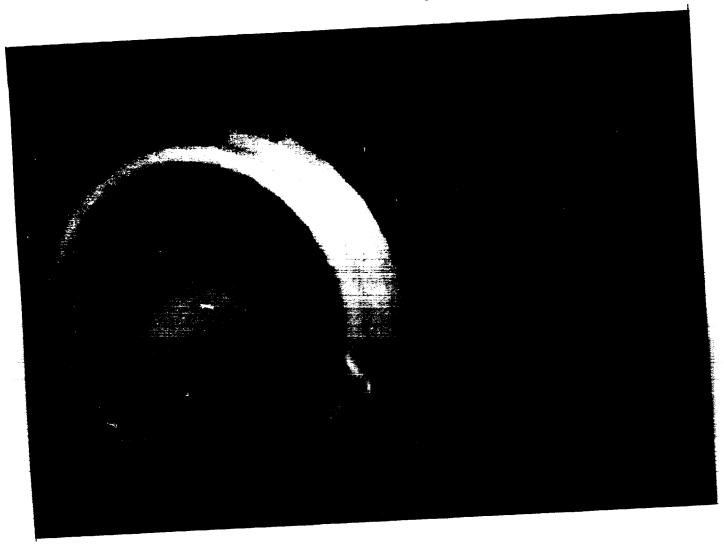



Figure 9. (c) "Faceted" Solid Rendering of Single-Slat Case.

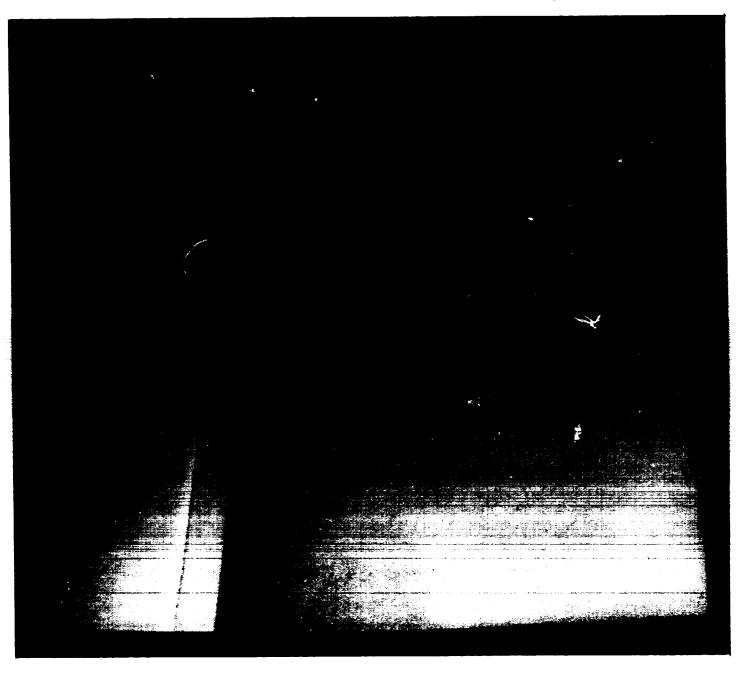
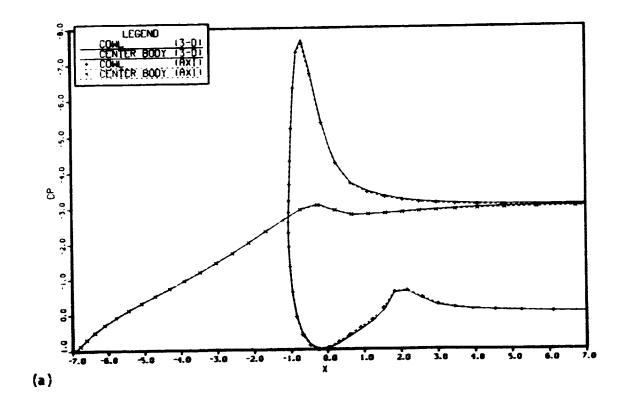




Figure 9. (d) "Smooth-Shaded" Solid Rendering of Side-View Closeup of Single-Slat Case.



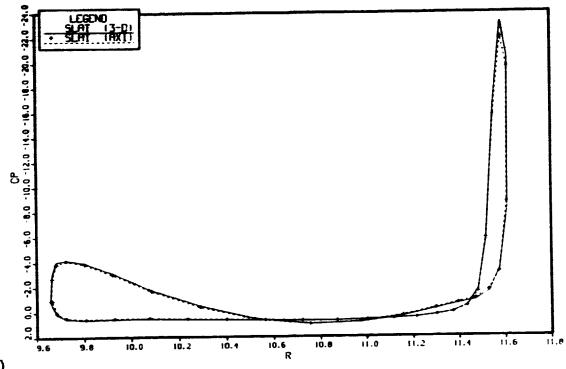
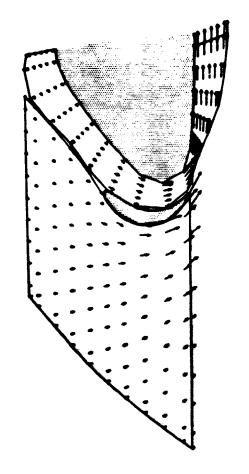
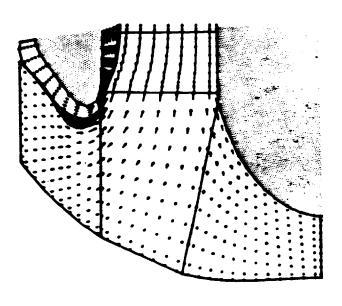
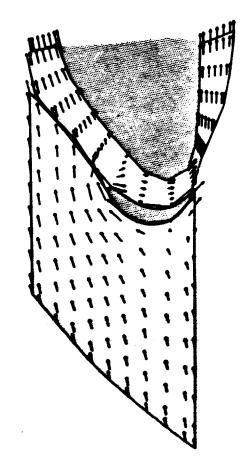
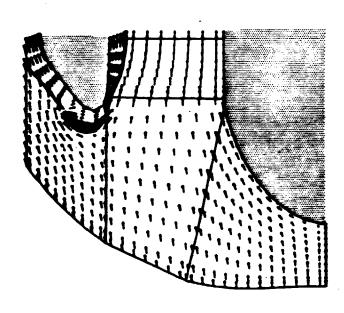
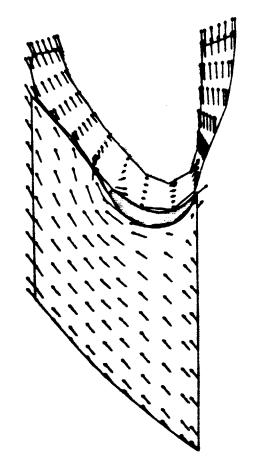
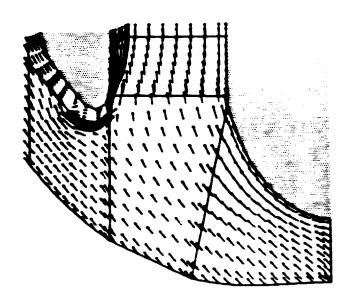




Figure 1C. Comparison Between Axisymmetric and Three-Dimensional Methods for Single Slat Inlet. (a) Pressure Distribution on Cowl and Centerbody. (b) Pressure Distribution on Slat.





Figure 11. Flowfield for Inlet with Single Slat. Static Solution.





No Added Suction. Figure 12. Flowfield for Inlet with Single Slat. Zero Angles of Attack and Yaw.





Combined Solution, 40° Angle of Attack, Zero Yaw, Figure 13. Flowfield for Inlet with Single Slat. Fan Face Velocity Twice Freestream.

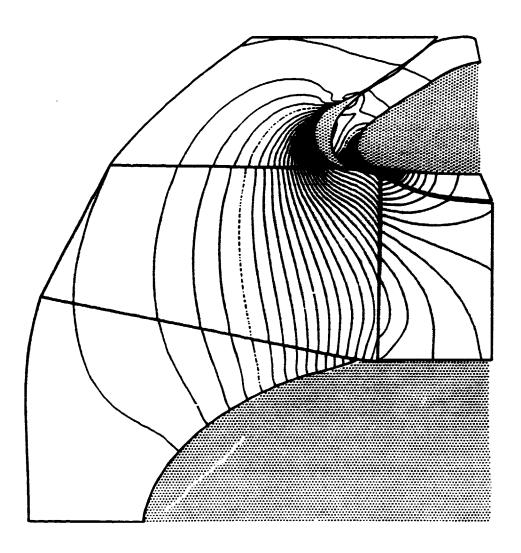



Figure 14. Off-Body Isobars for Inlet with Single Slat. Static Solution.

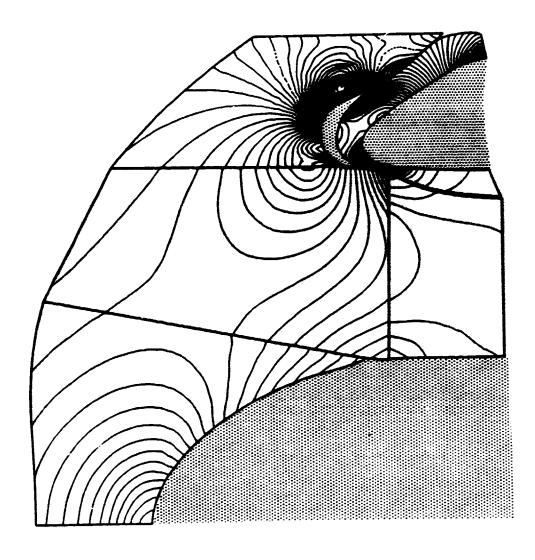



Figure 15. Off-Body Isobars for Inlet with Single Slat. Zero Angles of Attack and Yaw. No Added Suction.

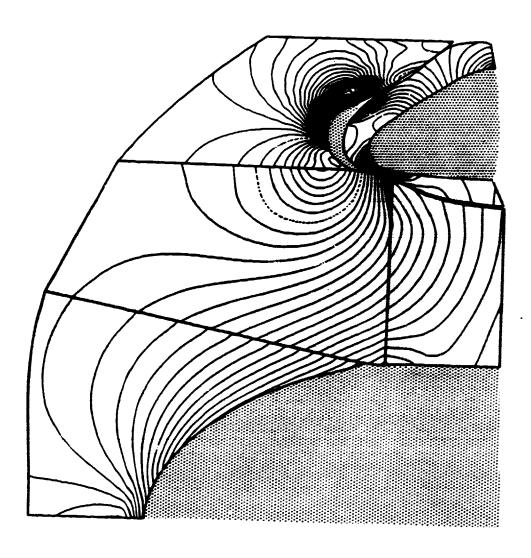



Figure 16. Off-Body Isobars for Inlet with Single Slat. Combined Solution, 40° Angle of Attack, Zero Yaw, Fan Face Velocity Twice Freestream.

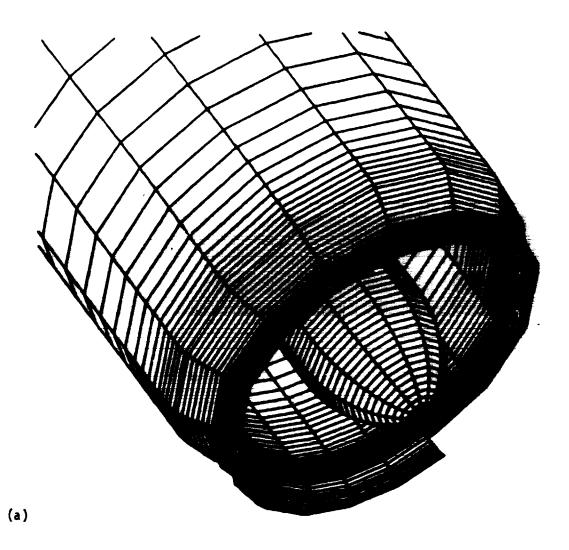
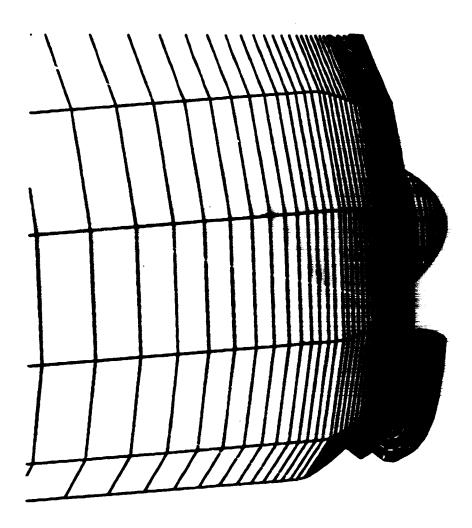




Figure 17. Three-Dimen, ional Double Slat Inlet Configuration. (a) Front View.



(b)

Figure 17. (b) Rear View of Double Slats.

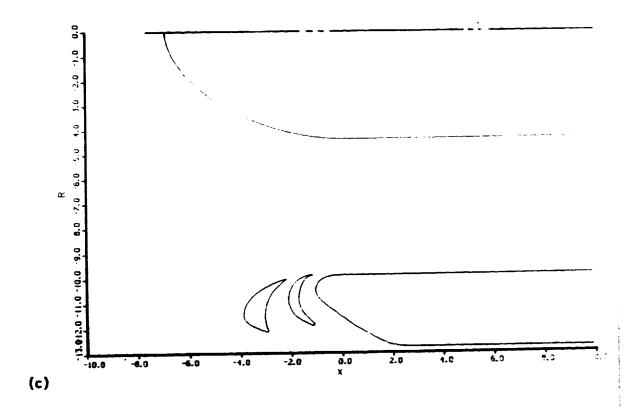



Figure 17. (c) Cross-Section Through Lower Half of Inlet.

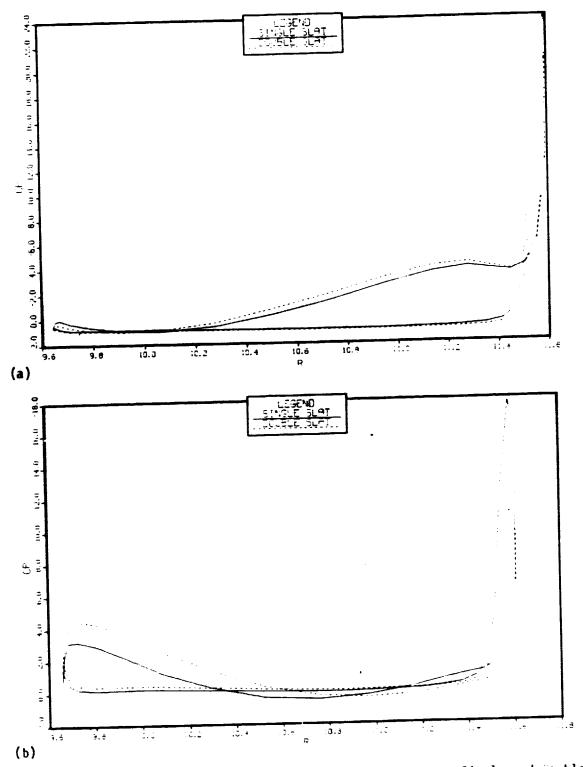



Figure 18. Comparison of Main Slat Pressure Distributions on Single and Double Slat Configurations. 40° Angle of Attack, Zero Yaw, Fan Face Velocity Twice Freestream. (a) 13° from Top Center. (b) 90° From Top Center.

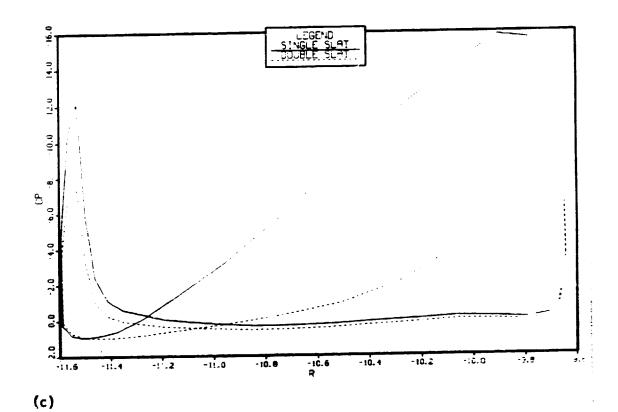
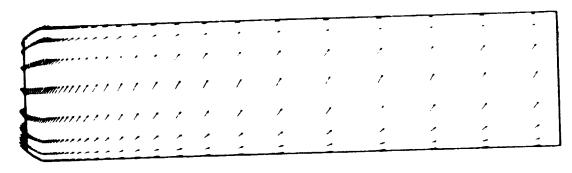
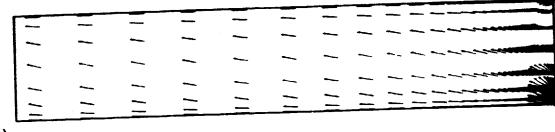
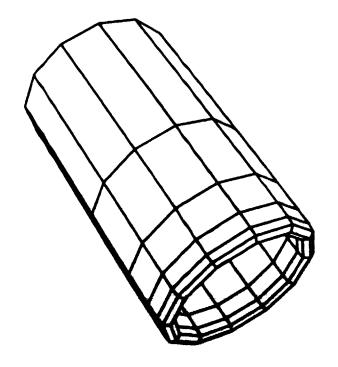





Figure 18. (c) 171° from Top Center.



(a)




(b)

Figure 19. Velocity Vectors for Double Slat Configuration. 40° Angle of Attack.

Zero Yaw, Fan Face Velocity Twice Freestream. (a) On Outer Cow!

Surface. (b) On Inner Cowl Surface.



(a)

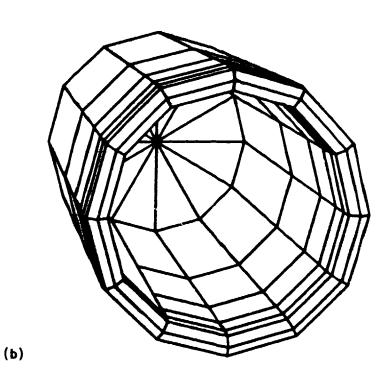
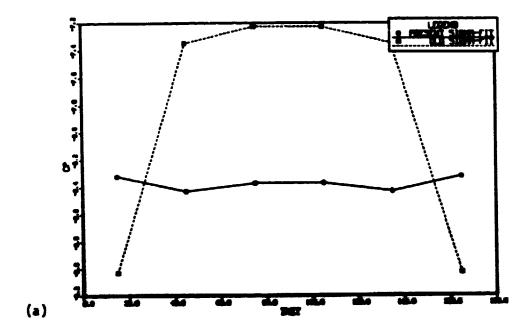




Figure 20. Wire-Frame Pictures of the 72-Panel (on the "Half-Body")
Round Inlet. Note the "Doublet Surface" Visible Inside At
the Rear of (b).



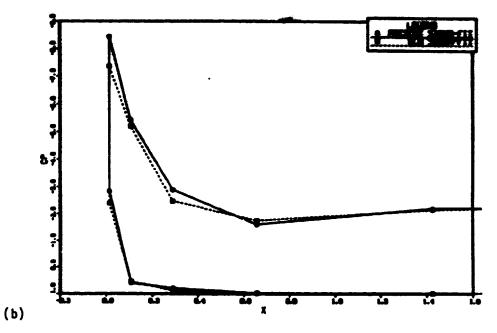



Figure 21. (a) Variation of Peak Cp with Theta (Circumferential Angle) (for the 72-Panel Round Inlet) for the Old and New Sigma-Fitting Procedure. (b) Sample Comparison of Chordwise Variations for a Fixed Theta ( $\theta$  = 75 Degrees).

```
0.1683279 0.9999989 0.000002000
4.0790472-0.0000020 1.1999998241
                                                                        0.4084057 0.9999989 0.000002000
1.9385128-0.0000020 1.199999800
                                                                       0.9062307 0.9999989 0.000002000
0.9062307-0.0000020 1.199999800
                                                                       1.9385128 0.9999989 0.000002000
4.0790472 0.9999989 0.000002000
0.4084057-0.0000020 1.199999800
0.1683279-0.0000020 1.199999800
0.0500000-0.0000020 1.186600700
                                                                        4.0790472 1.0392303-0.599998010
                                                                       1.9385138 1.0392303-0.599998000
                -0.0000020 1.099997500
0.0
                                                                        0.9062312 1.0392303-0.599998000
0.0500000-0.0000020 1.013394400
0.1683279-0.0000020 0.999998900
                                                                       0.4084061 1.0392303-0.599998000
0.1683283 1.0392303-0.599998000
0.0500004 1.0276270-0.593299900
0.4084057-0.0000020 0.9999988900
0.9062307-0.0000020 0.999998900
1.9385128-0.0000020 0.999998900
                                                                       0.0
                                                                                          D. 9526286-0. 5499973DD
                                                                       D.0500004 D.8776278-0.506695700
D.1683283 D.8660259-0.499997000
4.0790472-0.0000020 0.999998900
4.0790472 0.5999980 1.039231310
1.9385118 0.5999980 1.039231300
                                                                       0.4084057 0.8660259-0.499997000
0.9062309 0.8660259-0.499997000
1.9385138 0.8660259-0.499997000
4.0790472 0.8660259-0.499997000
4.0790472 0.6000010-1.033228410
1.9385128 0.6000010-1.033228400
0.9062304 0.598980 1.039231300
0.4084049 0.598980 1.039231300
0.1683269 0.5989978 1.039230300
0.0499990 0.5932995 1.027627000
0.0 0.5499975 0.952628000
0.0499992 0.5066960 0.877627100
                                                                       0.9062316 0.6000010-1.039229400
0.4064069 0.6000010-1.039229400
0.1663283 0.6000007-1.039228400
U.0497992 D.5096960 D.877527100
D.1683289 G.4906070 B.886024900
G.4044649 G.400070 B.886024900
D.9082302 G.4909070 G.86024900
1.3385118 B.4909070 G.86024900
4.6790472 G.4909070 B.86024900
4.6790472 J.0302284 B.800002018
                                                                       G. 8499999 G. 8933919-1. 027424000
                                                                       0.8 0.5600007-0.952525500
0.9500000 0.500008-0.877425600
0.1582284 0.400008-0.866024000
0.4084068 0.400008-0.866024000
0.9662314 0.400008-0.866024000
1.8388128 1.8382284 8.808802000
8.8082384 1.8382284 8.808802000
0.4084061 1.8382284 0.888802000
                                                                       1.9385128 0.499998-0.866024000
D.1683279 1.0392275 D.600001680
D.0499995 1.0276251 D.593302800
D.0 0.9526258 D.550001000
                                                                         4.0790472 D.499998-0.866024000
                                                                        4.0790472 B C
                                                                                                         -1.19999981D
0.0500004 0.8776255 0.506498800
0.1683288 0.8660239 0.499998800
0.4084064 0.8660240 0.499998800
                                                                         1.9385128 0.0
0.9062387 0.0
0.4084057 0.0
0.1683279 0.0
0.0500000 0.0
                                                                                                           -1.199999800
                                                                                                           -1.19999800
 U.9062319 U.8660240 U.499999800
                                                                                                            -1.1999980D
 -1.199999800
                                                                                                           -1.186600700
 4.0790472 1.1999998 0.000002010
                                                                                                            -1.099997500
 1.9385128 1.1999998 0.000002000
0.9062307 1.1999998 0.000002000
                                                                                          0.9
                                                                          0.0
                                                                                                           -1.013394400
                                                                          0.0500000 0.0
                                                                                                           -0.99998900
 0.4084057 1.1999998 0.000002000
                                                                          0.1683279 0.0
                                                                         0.4084057 0.0
0.9062307 0.0
1.8385128 0.0
                                                                                                            -0.99998900
 0.1683279 1.1999998 0.000002000
                                                                                                            -D.99998900
 0.0500000 1.1866007 0.000002000
                                                                                                            -0.999988900
0.0 .0999975 0.000002000
0.0500000 1.0133944 0.000002000
                                                                                                            -0.99998900
                                                                         4.0790472 0.0
```

Figure 22. Coordinates used for the 72-panel simple inlet check case.

```
THE STATE PARTY SALES OF STATE SALES OF SALES OF
```

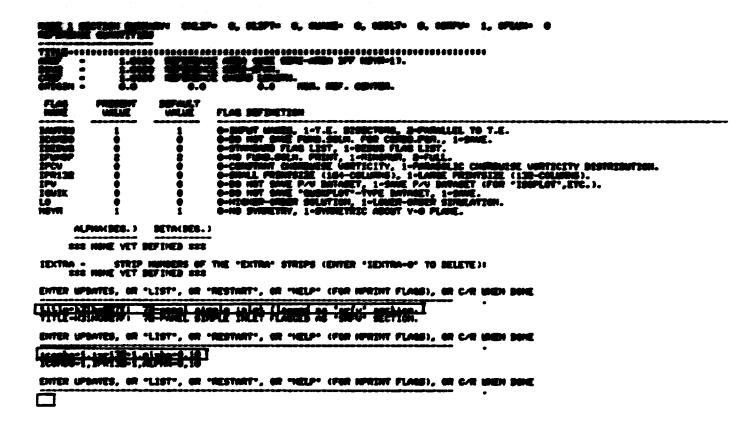



Figure 23. TSO submittal of DF12, Mode 1, for the 72-panel inlet check case.

```
TO A TENFORMY SAFINET FOR USE IN THE SAFON SUBMITTRE ...

PURAMENTAL SOLUTIONS WILL BE STORED INL TENTESF. SAFOTF. FUNDABLE

CTU TIME ENTINATE: GPU - ...

L'O TIME ENTINATE: GPU - ...

L'O TIME ENTINATE: GPU - ...

DOC CLASS OFFICIALS

CAR FOR MON-SEFERMED

CAR FOR SEFERMED (CHEAPEST)

SELECT JOS CLASS - ...

CAR FOR: SEST - TILL

SEFAULT: JOSHANE - MESFLETZ

JOSHANE - ...

DEFAULT: JOSHANE - MESFLETZ

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

DEFAULT: JOSHANE - MESFLETZ

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: JOSHANE - MESFLETZ

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

CAR FOR SEFAULT: GON - CHICAFTEST

JOSHANE - ...

JOSHANE - ...

JOSHANE - ...

CHICAFTEST JOSHANE - MESTLENG

JOSHANE - ...

JOSHANE - ...

JOSHANE - ...

JOSHANE - ...

CHICAFTEST JOSHANE - MESTLENG

JOSHANE - ...

JO
```

Figure 23. Concluded.

1

H31HG027F: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION. &Z ICOMB0=1, IPR132=1, ALPHA=0,10 &END

<del>-</del>

Figure 24(a). Alternative input dataset for DF12, Mode 1, for the 72-panel simple inlet check case.

```
PC-PATCH FITTING FOR: H31HG027F
//×
//×
//PCPATCH EXEC PGM=H31K,PARM='1.0.0',REGION=1000K
//STEPLIB DD DSN=TSOT3DF.DHF.LOAD,DISP=SHR
//FT01F001 DD DSN=TSOT3DF.TEMPGEON.D080985.T092117,
                   DISP=(OLD, DELETE)
//FT06F001 DD SYSOUT=A
//FT11F001 DD UNIT=SYSDA, SPACE=(TRK, (30,10)), DCB=(RECFM=VBS, BLKSIZE=19069)
//FT12F001 DD UNIT=SYSDA, SPACE=(TRK, (30,10)), DISP=(NEW, PASS),
                   DCB=(RECFM=VBS.BLKSIZE=19869)
/¥
//×
//×
       3-D HIGHER-ORDER LIFTING NEUMANN SOLUTION.
//X
                 (WITH INLET CAPABILITY)
//X
//X
             MODE 1, CASEID: 6027F
//X
//¥
//HEUMANN EXEC PGM=MAIN.REGION=4000K

//STEPLIB DD DSN=TSOT3DF.DF12.LOAD.DISP=SHR

//FT01F001 DD DSN=*.PCPATCH.FT12F001.
                    DISP=(OLD, DELETE)
//FT02F001 DD DSH=TSOT3DF.G027F.FUNDSOLM,
                    DISP=SHR
//FT04F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
// SPACE=(TRK,(1,10))
//FT05F001 DD DSN=TSOT3DF.DF12.D080985.T092117,DISP=(OLD,DELETE)
//FT06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=169,BLKSIZE=16900)
//FT08F001 DD UNIT=SYSDA.DCB=(RECFM=VBS,BLKSIZE=19069),
SPACE=(TRK,(1,10))
//FT09F001 DD UNIT=SYSDA.DCB=(RECFM=VBS,BLKSIZE=19069),
                    SPACE=(TRK,(1,10))
 //FT10F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                    SPACE=(TRK,(1,10))
 //FT11F001 DD UNIT=SYSDA, DCB=(RECFM=VB5, BLKSIZE=19069),
                    SPACE=(TRK,(1,10))
 //FT12F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
SPACE=(TRK,(1,10))
 //FT13F001 DD UNIT=SYSDA,DCB=(RECFM=VBS,BLKSIZE=19069),
                     SPACE=(TRK,(1,10))
 //FT14F001 DD UNIT=SYSDA.DCB=(RECFM=VBS.BLKSIZE=19069).
                    SPACE=(TRK,(1,10)
 //FT15F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
 SPACE=(TRK,(1,10))
//FT16F001 DD UHIT=SYSDA,DCB=(RECFM=VBS,BLKSIZE=19069),
 // SPACE=(TRK,(1,10))
//FT17F001 DD UNIT=SYSDA,DCB=(RECFM=VBS,BLKSIZE=19069),
 SPACE=(TRK,(1,10))
//FT18F001 DD UNIT=SYSDA,DCB=(RECFM=VBS,BLKSIZE=19069),
                     SPACE=(TRX,(1,10))
 //FT20F001 DD DUTHY
```

Figure 24(b). Mode 1 JCL stream for the 72-panel simple inlet check case.

|  |   | S S                                                                                              |
|--|---|--------------------------------------------------------------------------------------------------|
|  |   | ᆇ                                                                                                |
|  |   | ě                                                                                                |
|  |   | يد                                                                                               |
|  |   | Ę                                                                                                |
|  |   | eu<br>T-                                                                                         |
|  |   | Ę E                                                                                              |
|  |   | Ţ                                                                                                |
|  |   | Ę                                                                                                |
|  |   | Ž                                                                                                |
|  |   | 72.                                                                                              |
|  |   | 2                                                                                                |
|  | • | <b>.</b>                                                                                         |
|  |   | ę                                                                                                |
|  |   | 5                                                                                                |
|  |   | et e                                                                                             |
|  |   | Š                                                                                                |
|  |   | _                                                                                                |
|  |   | ě                                                                                                |
|  |   | ž.                                                                                               |
|  |   | Ë                                                                                                |
|  |   |                                                                                                  |
|  |   | ‡                                                                                                |
|  |   | Ş                                                                                                |
|  |   | دد<br>سو                                                                                         |
|  |   | Ę                                                                                                |
|  |   | 2                                                                                                |
|  |   | =                                                                                                |
|  |   | E S                                                                                              |
|  |   | <i>S</i>                                                                                         |
|  |   | Figure 25. Sample output from the DF12 Mode 1 solution for the 72-panel simple inlet check case. |
|  |   | ē.                                                                                               |
|  |   | ž                                                                                                |
|  |   | Ξ                                                                                                |
|  |   |                                                                                                  |

86

NEUMANN SECTION

M-LIMES CURVED

N-LINES CURVED

MCURV

> ! X !

D PATCHES

SECTO

UNFORMATTED DATASET CREATION IN PROGRESS ... 72 UNFORMATTED PATCH DATA MAS BEEN CREATED. NPAT = 72 TIME USAGE ... CPU\* 0.15 SECONDS, 1/0 = 0.18 SECONDS. DOUGLAS AIRCRAFT CUMPANY HIGHER ORDER POTENTIAL FLOW : FUNDAMENTAL SOLUTIONS
E: M31MGR27F: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION.
E: INPUT FLAGS CASE TITLE! PAGE TITLE! PAGE

TITLE=H31H0027F: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION. REFERENCE QUANTITIES

REFERENCE AREA (USE SEMI-AREA IFF MSYMAI). REFERENCE SEMI-SPAM. REFERENCE CHORD LENGIM. MEF. CENTER. AREF BOVY CREF ORIGIN

SOLIC CHORDMISE VORTICITY DISTRIBUTION.

PRINTSIZE (132-COLUMN).

DATABET (FOR MISOPLOTM, ETC.).

LEAVE.

SIMULATION. FLAG DEFINITION DEFAULT VALUE FRESENT

TECENT PECENT PE

IGMIK

AUTOM

FLAG NAME

BETA(DEG.) ALPHA(DEG.) IA R STRIP NUMBERS OF THE "EXTRA" STRIPS (ENTER "LEXTRA=0" TO DELETE): \*\*\* Hone yet defined \*\*\* IEXTRA =

Figure 25. Continued.

できるないなくのないことできましまって

^ ~

CURVATURES 9

<u>;</u> •

-O I WX I

≥:

ASE AGE

10E

1985

-

Continued 25 Figure

1.52963-0.00150 0.00000-0.41346 0.64122 0.00544-0.00000-0.41369 0.30923-0.63000 0.00000-0.41337 0.14912 0.17663-0.00000-0.41642 0.07346-2.33954 0.00008-0.41646 0.05918-4.40402 0.00279-0.21774

**ユミライガルア** 

2164646262

77.

1, 12961-0,00150-0,00000-0,41997 56 0.64122 0,00544-0,00000-0,4223 56 0.8923-0,03000 0,00000-0,4223 58 0.14912 0,17861-0,00000-0,42297 51 0.05470-4,40560-0,02394-0,22182 52 0.05470-4,40550-0,02394-0,22182 53 0.05470-2,35930-0,00139 0,5994 54 0.05470-2,35930-0,00139 0,5994 55 0.05470-0,00139 0,5994 56 0.12427 0,17667 0,00109 0,5994 57 0.05455 0,00546-0,00109 0,59736 58 0.53435 0,00546-0,00109 0,59736 1.32962-0.00150-0.00000-0.40007

76 6.64122 0.00544 0.00000-0.40220

14 0.30923-0.02999-0.00000-0.40220

15 0.07914-2.3584 0.00010 0.39716

15 0.0597-2.35849 0.00016 0.4595

15 0.2547-2.35849 0.00016 0.4595

15 0.25769-0.02999 0.00000 0.4595

15 0.25769-0.02999 0.00000 0.4595

15 0.53455 0.00544-0.00000 0.4595

17 10502-0.00150-0.00000 0.4595 0.53459 0.71550 1.15560 2.20223 AT 1 00000 M. 100000 M. 10000 M. 100000 M. 10000 M. 100000 M. 100000 M. 100000 M. 100000 M. 100000 M. 1000000 M. 100000 M. 10000000 M. 100000 -----AS "SRY" SECTION. DOUGLAS AIRCRAFT COMPANY HIGHER ORDER PO H33HG027F: 72-PANEL SIMPLE INLET FLAGGED AS INPUT PANEL CORNER POINTS AND COMPUTED PANEL 0 100000 X<100000 N 100000 N 100000 M | 00000 -01 WX I 111E: 100404catolic + annound + a 127 2444 8468 1...

Continued 25.

SUMMARY:

| DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOW: FUNDAMENTAL SOLUTIONS | CASE TITLE: HULHOBZYF: 72-PANEL BIMPLE INLET FLAGED AB "BRYF" BEGLIGH.<br>Page title: Vapore. Intermediate Matrix Formation Data. | HORDERD SECTIONS! (FEAKER SECTIONS POSITIONED AFTER "LIFT" SECTIONS): |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| •                                                                           | TITLE                                                                                                                             |                                                                       |
| PAGE                                                                        | CASE                                                                                                                              | 80                                                                    |
|                                                                             |                                                                                                                                   |                                                                       |

"ORDERED SECTIONS" ("WAKE" SECTIONS POSITIONED AFTER "LIFT" SECTIONS):

| MEAN<br>Internediate<br>Fan<br>Super Far | SOURCE(PERCENT)<br>5952 ( 57.4)<br>3188 ( 30.7)<br>1236 ( 11.9) | SMALL LOGS | •     | EDGE VORTEX(PERCENT) 8 | EDGE VORTEXCPERCENT) SWEAR EXTENDED LINE  6 0.0)  6 0.0) |
|------------------------------------------|-----------------------------------------------------------------|------------|-------|------------------------|----------------------------------------------------------|
| TOTAL                                    | 10364                                                           |            |       | •                      |                                                          |
| VAFORM TIME US                           | VAFORM TIME USAGE: CPU = 6.738 SEC.                             | 38 SEC.    | * 0/1 | 8.128 SEG.             |                                                          |
| TOTAL NUMBER (                           | TOTAL NUMBER OF RIGHT-HAND SIDES: NRHS = 3.                     | " NRHS "   | 'n    |                        |                                                          |

Ì

PAGE

DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOW : FUNDAMENTAL SOLUTIONS H31MG027F: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION.

ITERATIVE MATRIX SOLUTION CASE TITLE: PAGE TITLE!

MATRIX BLOCK STRUCTURE ...

Ţ IB (IBLK) C O N V E R

1.0800 TIME TO SULVE EQUATIONS

Figure 25. Continued.

0.215530E-03 0.224113E-03 0.120103E-03 0.542327E-04 0.485089E-04 0.478188E-04 : HORMAL VELOCITY MAXIMUM RESIDUAL NORMAL VELOCITY R.M.S. ERROR

MAX. VN OCCURS ON PANEL

7

| OR | GINAL       | PAGE IS |
|----|-------------|---------|
| OF | <b>POOR</b> | QUALITY |

| 2                                            |                                                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                      |                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 7                                            |                                                                                             | <b>₹</b>                                                    | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7404 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 404400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20047500<br>00047500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6466                                                                                                                                                                                   |                   |
| - 2                                          | É; ;                                                                                        | 8                                                           | NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO ACCOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 - 4 - 4 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2022<br>2022<br>2025<br>2026<br>2026                                                                                                                                                   |                   |
| *                                            | - 1 1                                                                                       | 171                                                         | 0040 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~~ <b>5</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ····••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.87.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V 10 4 10                                                                                                                                                                              |                   |
| 5                                            | 3!                                                                                          | 1 1                                                         | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>9999</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1M 000mmrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 990                                                                                                                                                                                    |                   |
| 쁫                                            | - 1 1                                                                                       |                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70N4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None on None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                      |                   |
| 200                                          | 9 I I                                                                                       |                                                             | 204400040404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1 1000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IO HOMMOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | なららいろろう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO-100                                                                                                                                                                                 |                   |
| 33                                           |                                                                                             | <u> </u>                                                    | 88248682704<br>88289987704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 W ~ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Condition - Cond |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47822001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99999                                                                                                                                                                                  |                   |
| •                                            |                                                                                             |                                                             | THE THE NEW PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 <b>6</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W. W. H. O. A.                                                                                                                                                                         |                   |
| u                                            | 1                                                                                           | 5                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                   |
| =                                            |                                                                                             | ᇹ                                                           | 4000000400<br>PB4-05000400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>しらりまるサフュロンジのとりもつくらっているとうこうこうこう</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71601                                                                                                                                                                                  |                   |
|                                              | 1 1                                                                                         | 821                                                         | ひろのしゅうしゅうりょうこうできるとのとのとのとのものはっているとのはいるというと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44601816668<br>146008346016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - BERNINGHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8629                                                                                                                                                                                   |                   |
|                                              | 1 1                                                                                         | 3>                                                          | 400004 · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ろくしゅ ち                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140000 · 040000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P PNOUNT4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$400000<br>\$400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000                                                                                                                                                                                  |                   |
| SNO                                          |                                                                                             | T I                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>POGO</b> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000                                                                                                                                                                                  |                   |
| -                                            |                                                                                             | <u>.</u> .                                                  | 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                     |                   |
| 5                                            |                                                                                             | TIA                                                         | としいり しょうかん ひっこう しょうしょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>これらりょう イストップ・プラウィック・ファック・ファック・ファック・ファック・ファック・ファック・ファック・ファ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>A4NUU-4</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | อนุจัมพัพย์<br>เหตุมพุทธ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600000<br>C 60000                                                                                                                                                                      |                   |
| SOL                                          |                                                                                             |                                                             | なるみのではなるできます。アカルスのようのはなるのではなっています。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tonn e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | でごう ちゅうき ロット ちゅうりょう シャン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DAPNOON NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4474060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52222                                                                                                                                                                                  |                   |
|                                              | , ,                                                                                         | 5                                                           | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ###PN000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |                   |
| < □                                          | , ,                                                                                         | Z i                                                         | éésesendesé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |                   |
| EN                                           |                                                                                             | <b>.</b> .                                                  | neneeneene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4NAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orotonn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                   |
| <b>F</b>                                     |                                                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2222 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1466464444644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | これできている こうしょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 6444<br>\$ 644                                                                                                                                                                      |                   |
| 3                                            |                                                                                             |                                                             | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74F-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | このやはらやしょうとはなって                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ア しゅうほうりゅう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | なりなるなのでは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22425                                                                                                                                                                                  |                   |
| 2                                            |                                                                                             | 7 :                                                         | 700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manag                                                                                                                                                                                  |                   |
| -                                            |                                                                                             | T :                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7777 <i>-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444H4                                                                                                                                                                                  |                   |
| 3                                            |                                                                                             | ¥ ;                                                         | 9474677×44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000<br>5750                                                                                                                                                                           |                   |
| 2                                            | 2                                                                                           | ~ <u>~</u> !                                                | 700000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 722272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2222                                                                                                                                                                                   |                   |
| 큄                                            |                                                                                             | 5                                                           | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                   |                   |
| TIA                                          | -                                                                                           |                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                   |
| 3                                            |                                                                                             |                                                             | 1 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                      |                   |
| F                                            |                                                                                             |                                                             | NOT THE COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | アラアラアルカナルのかんで                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>ที่พื้นผีจัง</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | るでする                                                                                                                                                                                   |                   |
|                                              |                                                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | プログラウスのアントイイン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                   |
| 2                                            |                                                                                             | Š                                                           | とうしょうりょう 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | としてもりの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000                                                                                                                                                                                   |                   |
| 2                                            | S A S                                                                                       | 518                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 527<br>527<br>527<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000<br>0000<br>0000<br>0000                                                                                                                                                           |                   |
| RDER PO                                      | GED AS                                                                                      | 121                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 927<br>. 926<br>. 926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | はちまなっててもののに、日上はらのののののののののののののののののののできません。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                            |                   |
| ORDER PO                                     | GED AS                                                                                      | ¥ .                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5276<br>1.2.9276<br>6.2.9263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                   |
| ER ORDER PO                                  | FLAGGED AS                                                                                  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 759 6.5276<br>761 -2.9363<br>636 -2.9363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROPERTY PARTY PAR | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366<br>813 : . 468<br>993 - 0. 447<br>852 - 1. 6787<br>716 - 2. 1688                                                                                                                   |                   |
| HER ORDER PO                                 | FLAGGED AS                                                                                  | 18                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALLE CONTRACTOR CONTRA | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111566<br>100564 4568<br>100594 - 0. 4448<br>100557 - 1. 6707<br>09716 - 2. 1689                                                                                                       |                   |
| HER ORDER PO                                 | LET FLAGGED AS                                                                              | 18 2                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 464799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .311566<br>.310013 : .4608<br>.309993 -0.4478<br>.310652 -1.6708<br>.309716 -2.1609                                                                                                    |                   |
| Y HIGHER ORDER PO                            | INLET FLAGGED AS                                                                            | 18 Z S1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 464799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311366<br>310813 2.4688<br>309993 -0.4478<br>310852 -1.678<br>309716 -2.1688                                                                                                           |                   |
| NY RIGHER ORDER PO                           | E INLET FLAGOED AS                                                                          | IS 2 2 SINI                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 0 .22 .25 .25 .25 .25 .25 .25 .25 .25 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 -0.311366<br>-0.310813 7.4688<br>0 -0.308993 -0.4478<br>6 -0.316898 -1.67678<br>5 -0.309716 -2.1688                                                                                  |                   |
| OMPANY HIGHER ORDER PO                       | MPLE INLET FLAGGED AS                                                                       | IS 2 SIN                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 901<br>901<br>902<br>903<br>904<br>904<br>904<br>904<br>904<br>904<br>904<br>904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194 0.271630 -0.1748<br>419 0.2851300 8.1183137<br>177 0.285130 8.99393<br>185 0.285137 8.9934<br>185 0.285137 8.9834<br>185 0.285137 8.9834<br>257 0.297643 -2.9834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 913 - 0.311366<br>850 - 0.310813 2.4688<br>790 - 1.389993 - 0.4478<br>996 - 0.316852 - 1.6767<br>755 - 0.309716 - 2.1688                                                               | ued.              |
| COMPANY MIGHER ORDER PO                      | SIMPLE INLET FLAGGED AS                                                                     | 01 POINTS>}   < 81                                          | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14494 0.271630 -0.1748<br>64191 0.285130 0.1199<br>64179 0.285130 0.1999<br>67179 0.285130 0.9984<br>67324 0.285130 0.9849<br>64324 0.29764 0.9849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62913 -0.311866<br>66859 -0.310813 2.4688<br>57790 -0.369993 -0.4478<br>66996 -0.316658 -1.6767<br>86785 -0.309716 -2.1688                                                             | fnued.            |
| COMPANY MIGHER ORDER PO                      | LUTION                                                                                      | ROL POINTS>   {< SINIO4 JOH                                 | 17.055<br>15.055<br>15.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17.055<br>17 | . 266186 0.968799 0.88798<br>. 268188 0.968799 0.98798<br>. 268188 0.968769 0.96879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168849 6 1111111 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .014494 0.2216100 -0.11748<br>.964101 0.285100 02.1189<br>.96417 0.285100 02.1189<br>.96417 0.285100 0.9084<br>.96417 0.285100 0.8649<br>.964124 0.285104 0.8849<br>.964125 0.285104 0.8849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .162913 -0.311866<br>.166859 -0.310813 2.4688<br>.157790 -0.369993 -0.4478<br>.166996 -0.316688 -1.6767<br>.186755 -0.309716 -2.1688                                                   | tinue             |
| RAFT COMPANY HIGHER DRDER TO                 | MEL SIMPLE INLET FLAGGED AS                                                                 | ROL POINTS>   {< SINIO4 JOH                                 | 0.317980<br>0.317980<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.317982<br>0.3                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.014494 0.221630 -0.124694 0.221630 -0.12469 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0.221630 0. | 1.162913 +0.311366<br>1.160859 -0.310135 :.4608<br>1.157790 -1.309993 +0.4478<br>1.160996 -0.310652 -1.6707<br>1.160996 -0.310652 -1.6707                                              | Nue               |
| RAFT COMPANY HIGHER DRDER TO                 | MEL SIMPLE INLET FLAGGED AS                                                                 | CONTROL POINTS>}   <                                        | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 0.702901 0.70299<br>73 1.162849 0.310617 2.4690<br>69 1.160849 0.310617 2.4690<br>96 1.160849 0.310656 -1.6707<br>77 1.1960849 0.310656 -1.6707<br>77 1.1960871 0.310656 -1.6566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87 1.014494 0.271610 -0.1748<br>20 0.964301 6.288190 2.1189<br>77 0.96417 0.288187 2.0887<br>69 0.96417 0.288187 2.0887<br>67 0.964124 0.288197 -2.9879<br>73 0.964124 0.288197 -2.9658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 1.162913 -0.311366<br>73 1.166859 -0.316813 2.4668<br>69 1.157790 -0.369993 -0.4478<br>96 1.169996 -0.316652 -1.6767<br>77 1.186755 -0.309716 -2.1688                               | tinue             |
| RAFT COMPANY HIGHER DRDER TO                 | 2-PANEL SIMPLE INLET FLAGGED AS LOW SOLUTION                                                | X Z Z SI                                                    | 6115<br>5469<br>5272<br>6.317922<br>1.15696<br>6.317922<br>1.15696<br>6.317922<br>1.15696<br>6.31791<br>1.15696<br>6.31791<br>1.15696<br>6.3179<br>6.31791<br>1.15696<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.31791<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.3179<br>6.31                                                                                                                                                                                                                                                                                                                                                                                 | 14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116 0.702901 0.704599<br>117 1.162912 0.311379<br>473 1.166249 0.310517 2.4691<br>469 1.157758 0.309997 -0.4478<br>896 1.169795 0.310556 -1.6797<br>877 1.196796 0.310526 -1.6797<br>877 1.196796 0.310526 -1.6585<br>877 1.10676 0.309286 -1.6585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 387 1.014494 0.271630 -0.1748<br>220 0.96419 0.295190 2.1591<br>278 0.96417 0.295130 2.9824<br>897 0.96417 0.295137 2.9824<br>469 0.96735 0.259016 0.5879<br>473 0.964324 0.258197 -2.9668<br>116 0.96257 0.293197 -2.9668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6117 1.162913 -0.311366<br>7473 1.166859 -0.316813 2.4668<br>3469 1.157790 -0.369993 -0.4478<br>5896 1.169996 -0.316652 -1.6767<br>0277 1.186755 -0.309716 -2.1688                     | 5. Continue       |
| AIRCRAFT COMPANY HIGHER ORDER PO             | 72-PANEL SIMPLE INLET FLAGGED AS FLOW SOLUTION                                              | X CONTROL POINTS>                                           | 674115<br>67472<br>655469<br>655595<br>655595<br>655595<br>655595<br>65569<br>65569<br>65569<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>65649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>66649<br>666                                                                                                                                                                                                                                                                                                       | 423468 6.264186 6.96599 6.9279<br>607472 6.264186 6.962761 -2.9279<br>076114 6.262800 6.96648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 976116 9.762901 9.76599<br>976117 1.162912 9.310617 2.4691<br>423469 1.15788 9.310617 2.4691<br>455896 1.16999 9.310656 -1.6797<br>529627 1.196971 9.310624 -1.6568<br>616622 1.166871 9.310624 -1.6568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 014387 1.014494 0.271630 -0.1748<br>106220 0.964301 6.288190 2.1390<br>259270 0.96419 0.259239 2.9824<br>423469 0.964177 0.288137 2.00874<br>623469 0.964128 0.288137 2.00874<br>007473 0.964128 0.288197 -2.9668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 076117 1.162913 -0.311366<br>007473 1.166859 -0.310813 2.4668<br>423469 1.157790 -0.369993 -0.4478<br>655896 1.166996 -0.316652 -1.6767<br>290277 1.186755 -0.309716 -2.1688           | 25. Continue      |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | AL FLOW SOLUTION                                                                            | X Y Z SI                                                    | 74115 0.317950 1.160940 8.4490 23469 0.317022 1.190940 8.4490 555695 0.315013 1.199841 1.0.4490 62219 0.317011 1.199841 1.0.4490 62219 0.317011 1.199841 1.0.4490 62219 0.277072 1.0.49080 62219 0.277072 1.0.27490 62219 0.263069 0.966792 8.39090 642246 0.277072 1.0.27492 8.39090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .423468 6.264186 6.465799 6.92498 6.92498 6.264186 6.462799 6.26498 6.262491 -2.94249 6.26266 6.26624 6.26249 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262 6.26262  | 24/22 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2 0 . 26/24/2  | .074116 0.702001 0.704599<br>.074116 0.702001 0.111579<br>.007473 1.166849 0.1110817 2.4601<br>.423469 1.159788 0.100817 2.4478<br>.455896 1.166995 0.110856 -1.478<br>.296277 1.156784 0.100856 -1.4586<br>.014487 1.10678 0.100824 -1.4586<br>.014487 1.110678 0.120786 -1.4586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14587 1.014494 0.271650 -0.1748<br>06220 0.964101 0.285190 2.1591<br>0.25220 2.96419 0.259290 3.5929<br>55897 0.96417 0.259157 2.0087<br>23469 0.96718 0.259016 0.5879<br>07475 0.964124 0.259187 -2.9668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76117 1.162913 -0.311366<br>07473 1.166850 -0.310813 2.4698<br>23469 1.157790 -0.369993 -0.4478<br>55896 1.16996 -0.316652 -1.6707<br>90277 1.156755 -0.309716 -2.1688                 | re 25. Continue   |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | 7F: 72-PANEL SIMPLE INLET FLAGGED AS NTAL FLOW SOLUTION                                     | < CONTROL POINTS>     < SI                                  | 4.076113 0.317980 1.166996 2.167472 0.317980 1.166996 2.16646 3.065869 0.317980 1.189864 2.16646 3.065869 0.317913 1.189864 2.16646 3.06466 0.317913 1.184867 1.169868 1.169868 1.169869 0.317913 1.184867 1.169868 1.169868 1.169869 0.317946 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.317466 0.3177878 2.388898 2.388888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.388888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.388888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.3888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.3888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.38888 2.3888 2.3888 2.38888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.423440 0.244364 0.442490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242490 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.242400 0.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.074116 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.708400 0.7 | 0.014387 1.014494 0.271630 -0.1748<br>0.106220 0.964301 6.288190 2.13901<br>0.289270 0.96419 0.289239 2.99287<br>0.653507 0.964177 0.288137 2.90287<br>1.423469 0.964127 0.285137 2.90287<br>3.007473 0.964324 0.285197 -2.9658<br>4.076116 0.962257 0.255643 -2.9658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.074117 1.162913 +0.311364<br>3.007473 1.166859 -0.316813 2.4668<br>1.423469 1.157790 -0.369993 +0.4478<br>0.655896 1.169996 -0.316652 -1.6767<br>0.296277 1.156755 -0.369716 -2.1688 | gure 25. Continue |
| UGLAS AIRCRAFT COMPANY HIGHER ORDER PO       | 6027F: 72-PANEL SIMPLE INLET FLAGGED AS<br>AMENTAL FLOW SOLUTION                            | X CONTROL POINTS>                                           | 2. 4. 42.44.2 6. 317.98.0 1. 1969968 1. 42.44.2 6. 317.98.0 1. 1969968 6. 317.98.0 1. 1969968 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 1969868 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1. 196988 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. 4.074116 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401 0.708401  | 0.014387 1.014494 0.271630 -0.1748<br>0.106220 0.964301 6.288190 2.139019<br>9 0.298270 0.96419 0.298239 2.98879<br>10 1.423469 0.964177 0.238137 2.00874<br>11 1.423469 0.964125 0.238137 2.9678<br>12 3.007473 0.964124 0.288197 -2.9678<br>1- 4.076116 0.962257 0.283197 -2.9678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.446782 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.16884                                   | re 25. Continue   |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | IMG827F: 72-PANEL SIMPLE INLET FLAGGED AS MDAMENTAL FLOW SOLUTION                           | V IU X Y Z SI                                               | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAP: 4.376116 0.702401 0.70599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.106220 0.964301 6.255199 2.15991<br>9 0.655277 0.964119 0.255239 2.9537<br>10 0.655277 0.964177 0.255137 2.9637<br>11 1.423469 0.967355 0.259016 0.9879<br>12 3.007473 0.964324 0.255197 -2.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.446782 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.16884                                   | gure 25. Continue |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | HGG27F: 72-PANEL SIMPLE INLET FLAGGED AS<br>DAMENTAL FLOW SOLUTION                          | IV IU X CONTROL POINTS}   < SI                              | EXTRAP: 4.074115 0.317950 1.160940 2.74549 0.317052 1.1150940 2.459449 2.445449 0.317052 1.1150940 2.4456 0.317052 1.1150940 2.4456 0.317051 1.1150949 1.16454 0.29627 0.315913 1.1159049 1.16454 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AP: 4.376116 0.702961 0.704599<br>AP: 4.076116 0.702961 0.311379<br>2.1.423469 1.107788 0.318817 2.4691<br>3.0.62369 1.107788 0.318817 0.4478<br>3.0.623896 1.167949 0.318886 1.6787<br>4.0.59896 1.166995 0.318886 1.6787<br>5.0.70387 1.186997 0.318886 1.6787<br>6.0.014387 1.186971 0.318824 1.65886<br>6.0.014387 1.18676 0.2893824 1.3888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.104220 0.964301 6.258190 2.15918<br>9 0.259297 0.964119 0.2592137 2.0024<br>11 1.423469 0.964128 0.259014 0.9879<br>12 3.007473 0.964124 0.258197 -2.9468<br>AP: 4.076114 0.962257 0.257643 -2.9468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.446782 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.16884                                   | gure 25. Continue |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | H31M6027F: 72-PANEL SIMPLE INLET FLAGGED AS FUNDAMENTAL PLOM SOLUTION                       | IV IU X Y Z SI                                              | EXTRAP: 4.074115 0.317950 1.160940 2.74549 0.317052 1.1150940 2.459449 2.445449 0.317052 1.1150940 2.4456 0.317052 1.1150940 2.4456 0.317051 1.1150949 1.16454 0.29627 0.315913 1.1159049 1.16454 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAP: 4.376116 0.702401 0.70599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.106220 0.964301 6.255199 2.15991<br>9 0.655277 0.964119 0.255239 2.9537<br>10 0.655277 0.964177 0.255137 2.9637<br>11 1.423469 0.967355 0.259016 0.9879<br>12 3.007473 0.964324 0.255197 -2.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.074117 1.162913 +0.311364<br>3.007473 1.166859 -0.316813 2.4668<br>1.423469 1.157790 -0.369993 +0.4478<br>0.655896 1.169996 -0.316652 -1.6767<br>0.296277 1.156755 -0.369716 -2.1688 | gure 25. Continue |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | E: H31H6027F: 72-PAHEL SIMPLE INLET FLAGGED AS<br>E: FUNDAMENTAL FLOW SOLUTION              | IV IU X CONTROL POINTS}   < SI                              | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAP: 4.376116 0.702401 0.70599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.106220 0.964301 6.255199 2.15991<br>9 0.655277 0.964119 0.255239 2.9537<br>10 0.655277 0.964177 0.255137 2.9637<br>11 1.423469 0.967355 0.259016 0.9879<br>12 3.007473 0.964324 0.255197 -2.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.446782 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.16884                                   | gure 25. Continue |
| AS AIRCRAFT COMPANY HIGHER DRUBER PO         | HASHGOZYF! 72-PANEL SIMPLE INLET FLAGGED AS FUNDAMENTAL FLOW SOLUTION                       | C SEC.   < CONTROL POINTS>}   < TYPE IV IU X Y Z SI         | EXTRAP: 4.074115 0.317950 1.160940 2.74549 0.317052 1.1150940 2.459449 2.445449 0.317052 1.1150940 2.4456 0.317052 1.1150940 2.4456 0.317051 1.1150949 1.16454 0.29627 0.315913 1.1159049 1.16454 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.165940 0.31701 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.11509425 1.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAP: 4.376116 0.702401 0.70599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.106220 0.964301 6.255199 2.15991<br>9 0.655277 0.964119 0.255239 2.9537<br>10 0.655277 0.964177 0.255137 2.9637<br>11 1.423469 0.967355 0.259016 0.9879<br>12 3.007473 0.964324 0.255197 -2.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.44678 3 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.1688                                   | gure 25. Continue |
| DOUGLAS AIRCRAFT COMPANY MIGNER ORDER PO     | TITLE: HINDAMENTAL FLOW SOLUTION                                                            | SEC.   < CONTROL POINTS>                                    | EXTRAP: 4.074115 0.317550 1.155956 1.557459 0.317022 1.155956 1.557459 0.317022 1.155954 1.2 1.423469 0.317022 1.155941 1.0.4450 0.217021 1.155941 1.0.4450 0.317051 1.155941 1.0.5450 0.317051 1.155964 1.155964 1.155964 1.155964 1.155964 1.155964 1.155964 1.155964 1.155964 1.155964 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15596 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAP: 4.376116 0.702401 0.70599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 0.014587 1.014494 0.271650 -0.1748<br>8 0.106220 0.964301 6.255199 2.15991<br>9 0.655277 0.964119 0.255239 2.9537<br>10 0.655277 0.964177 0.255137 2.9637<br>11 1.423469 0.967355 0.259016 0.9879<br>12 3.007473 0.964324 0.255197 -2.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 3.007473 1.166859 -0.311366 2.46882 1.423469 1.157790 -0.316813 2.44678 3 0.655896 1.167996 -0.316852 -1.67674 0.290277 1.156759 -0.309716 -2.1688                                   | gure 25. Continue |
| E 7 BOUGLAS AIRCRAFT COMPANY MIGHER ORDER PO | SE TITLE: HSHG627F: 72-PANEL SIMPLE INLET FLAGGED AS<br>GE TITLE: FUNDAMENTAL FLOW SOLUTION | L. SEC SEC.   < CONTROL POINTS>                             | EXTRAP: 4.076113 0.317980 1.166996 2.4486 3.170820 1.156996 3.170820 1.156996 3.46747 3.007472 0.317980 1.156996 3.4486 4.655895 0.317961 1.159969 1.66496 4.655895 0.317961 1.159969 1.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EXTRAP: 4.976116 0.702901 0.704599<br>EXTRAP: 4.076117 1.162912 0.310517 2.4601<br>5. 1.42349 1.15778 0.309997 -0.4478<br>7. 0.42349 1.15778 0.309997 -0.4478<br>7. 0.29227 1.156995 0.30955 -1.6589<br>5. 0.104287 1.10676 0.309824 -1.6589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 0.64587 1.014494 0.271630 -0.1748<br>2 0.106220 0.964301 6.288190 2.189018<br>3 0.683827 0.96419 0.283829 2.98287<br>11 1.423469 0.964127 0.283137 2.00828<br>12 3.007473 0.964324 0.283197 -2.9648<br>6 EXTRAP: 4.076116 0.962257 0.283197 -2.9668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXTRAP: 4.076117 1.162913 -0.311366                                                                                                                                                    | gure 25. Continue |
| DOUGLAS AIRCRAFT COMPANY MIGNER ORDER PO     | E TITLE: HINDAMENTAL FLOW SOLUTION                                                          | . SEC SEC.   < CONTROL POINTS>}   < NO. TYPE IV IU X Y Z SI | EXTRAP: 4.076113 0.317980 1.166996 2.4486 3.170820 1.156996 3.170820 1.156996 3.46747 3.007472 0.317980 1.156996 3.4486 4.655895 0.317961 1.159969 1.66496 4.655895 0.317961 1.159969 1.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496 5.66496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1.423445 0.764364 0.465359 1.93795<br>11 1.423445 0.26436 0.465359 1.92795<br>12 3.607472 0.263356 0.962791 -2.9450<br>EXTRAP: 4.076114 0.262800 0.960636 5.9450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 3.004472 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.847941 0.747898 0.747898 0.747898 0.798999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.7984999 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147941 0.798499 12.147949 12.147941 0.798499 12.14794 0.798499 12.14794 0.798499 12.14794 0.798499 12.14794 0.7 | EXTRAP: 4.074116 0.702901 0.704599<br>5 1.007473 1.166849 0.31370<br>5 2 1.423469 1.157788 0.309997 -0.4478<br>7 0.423469 1.157788 0.309997 -0.4478<br>7 0.29287 1.156995 0.309997 -0.4478<br>9 0.204287 1.15678 0.309824 -1.6588<br>9 0.204287 1.10676 0.309824 -1.6588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0.64587 1.014494 0.271630 -0.1748<br>2 0.106220 0.964301 6.288190 2.189018<br>3 0.683827 0.96419 0.283829 2.98287<br>11 1.423469 0.964127 0.283137 2.00828<br>12 3.007473 0.964324 0.283197 -2.9648<br>6 EXTRAP: 4.076116 0.962257 0.283197 -2.9668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXTRAP: 4.074117 1.162013 +0.311366 4 1 3.007473 1.160850 +0.310813 2.4608                                                                                                             | gure 25. Continue |

Continued Figure 25.

PAGE

IS

ORIGINAL PAGE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL FLOM : FUNDAMENTAL BOL                  | TENER CONTRACTOR OF THE PROPERTY OF THE PROPER |  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CADER POTENTI                              | SIOMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | ######################################                           |
| DIALI O MANANANANANANANANANANANANANANANANANANAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APANY HIGHER                               | POINTS Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | 62413 -0.0110<br>60890 -0.8100<br>87780 -0.8893<br>60996 -0.8893 |
| ZIZE O I ANDADOGOGOGOMY SUPPLO SOLONO NO NO CONTROL DE LES INCIDENTA DE LA CONTROL DEL CONTR | AS AIRCRAFT<br>72-PANEL 9<br>I. FLOW SOLUT | X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200      |

| UTIONS MEDNESDAY, JUL 17, 196.     | TAL FLOW SOLUTION | 9. 167967 10. 15169 -102. 153968 153969 -102. 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 153969 1539699 15396999 15396999 1539699999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78 0.030663 2.303939 +4.30134<br>64 0.015995 2.265893 -4.134107<br>79 -0.005793 2.732690 -6.467595<br>37 -0.055733 5.637307 -105.2272<br>81 -0.450733 5.637307 -105.2272<br>81 -14.74646 24.13524 -105.2272<br>81 -14.74646 24.13524 -105.2272<br>82 -13.50592 35.22566 -1240.125<br>83 -0.156741 29.46549 -125.025<br>84 -0.156741 29.46549 -125.025<br>85 -0.156741 29.46549 -125.054<br>85 -0.07367 18.30055 -333.0767<br>86 -0.067367 18.30055 -333.0767<br>86 -0.067367 18.30055 -333.0767<br>86 -0.067367 18.30055 -333.0767 | 32 -6.112433 2.3020083 -4.60711<br>53 -6.05522 2.3020083 -4.60711<br>53 -6.055356 2.746681 -6.590068<br>54 -6.055452 5.59978 -30.54508<br>54 -6.052452 5.59978 -30.54508<br>54 -6.05242 5.59978 -30.55978<br>55 -1.607214 5.95978 -30.55978<br>56 -0.05214 29.40281 -864.65978<br>56 -0.05214 18.26978 -302.75678<br>56 -0.05215 18.26978 -302.87678<br>56 -0.05215 18.26978 -302.75678<br>56 -0.05215 18.26978 -301.27568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₹:                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ON.                                | OMPRESSIBL<br>VX  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SREV SECTION                       |                   | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ORDER POTE                         | SIGNA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.22.22.22.22.22.22.22.22.22.22.22.22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HICKER<br>HIET FLA                 | NTS> IN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AFT COMPA<br>EL SIMPLE<br>DLUTION  | CONTROL POINT     | 1.160872<br>1.1160877<br>1.0160877<br>1.0160877<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087<br>1.016087 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DLAS AIRC                          | ×                 | 0.106.287<br>0.106.287<br>0.106.287<br>0.65.287<br>0.65.287<br>0.65.287<br>0.65.287<br>0.65.287<br>0.65.287<br>0.65.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.874116<br>0.6556473<br>0.6556473<br>0.2656473<br>0.1066277<br>0.1066277<br>0.2666277<br>0.2666277<br>0.2666277<br>0.007473<br>4.007473                                                                                                                                                                                                                                                                                                                                                                                           | 4 WILE SECTION OF THE PROPERTY |
| H31HG027                           | E 1V 7U           | CXTRAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXTRAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXT STATES OF STANS STAN |
| AGE 11<br>ASE TITLE:<br>AGE TITLE: | D. NO. TYPE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a a wanganganga<br>a a wanganganga<br>a a wanganganga                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 44                               | Z=                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| IGHER PROFER POTENTIAL FLOW : FUNDAMENTAL SOLUTIONS MEDNESDAY, JUL 17, 1965 ET FLAGOED AS "SRFV" SECTION.                                                                        | AREF, BOV2, CREF>   ETA SECTCL SECTCD ASTRIP CIRCULTH | 26 523, 59174 523, 59174 0.41706288888888888888888888 40497 2.4462 0.6 591812.591061218.59104 0.44797-909.69531-165.26805 1.7936 0.0 591812.591061218.59104 1.46809 100.45784 -59.61143 0.6532 0.0 597 587.99181 587.99184 0.46609 100.54728 -49.9236 0.5452 0.0 597 587.98181 587.99181 0.45797 789.33477-137.95197 1.4971 0.0 588 588 588 588 588 588 588 588 588 588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAGE 12 DOUGLAS AIRCRAFT COMPANY HIGHER PRDER POTENTIAL FLOW : FL<br>CASE TITLE: H31MB027F: 72-PANEL SIMPLE INLET FLAGOED AS "SRFW" SECTION.<br>PAGE TITLE: INTEGRATED PRESSURES | TYPE SEC NV CL CD CSF CPITCH CROLL CYAN               | SRFV 1 1-689 96958 -91. 32813-134. 6349512095. 44726 585. 95134 5827. 19458 -92. 34409-5921. 97212 5529 401349 587. 04466 587. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 0446 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. 04466 57. | THE REAL PROPERTY OF THE PROPE |

Figure 25. Continued.

| 7. 198      | +SUCTION              | 1                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORIGINAL PAGE<br>OF POOR QUALITY      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDAY, J     | •                     | -                                                                               | OTHER PROPERTY OF THE PROPERTY |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.1922<br>24.1922<br>34.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.1922<br>36.192 |
| WEDN        |                       | NOT IN                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 2.22<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22<br>2.22<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5272<br>5272<br>5277<br>5277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ALPHA                 | IL FLOW SOLI                                                                    | 72742744444444<br>727447444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IL SOLUT    | †<br>†<br>†<br>†<br>† | POTENTI                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6666<br>6666<br>66666<br>66666<br>66666<br>66666<br>66666<br>6666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · FUNDAMENT | *                     | XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>XA<br>X |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TIAL FLOW   | FV* SECTI             | NA INC                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDER POTE   | GED AS                | SIGNA                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.465476<br>1.665696<br>1.665696<br>2.167986<br>2.16798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HIGHER      | INLET                 | NTS> 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FT COMPA    |                       | ONTROL POIN                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.162918<br>1.1577990<br>1.1567990<br>1.1567996<br>1.156799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 01          | F1 72-PA              | × ×                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.074117<br>3.0074117<br>1.421469<br>0.655896<br>0.290277<br>gura 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0           | OH INI I              | E 1V                                                                            | EXT A T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EXTRAP.                               | EXTRAPT STAPT STAP | EXTRAP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13          | TITLE                 | SEC SEC                                                                         | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PAGE        | CASE                  | PRI.                                                                            | UND 4 B A B A B A B A B A B A B A B A B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NANDVELENE ANNON A                    | のこれでは、日本のようでは、日本のでは、日本のようでは、日本のようでは、日本のようでは、日本のようでは、日本のようでは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2224<br>2820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| PAGE 14<br>CASE TITLE                       | <b>3</b> 21 | 3140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 72-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PANEL SIMP | PANY<br>LE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IGHER O | GREE AS TORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HTIAL FLOW | - FUNDAMENT    | AL SOLUTI | ONS ALPHA  | MEDNE<br>10.00, B                                           | ESDAY, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30            | 7, 1945<br>SUCTION |
|---------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------|------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| AGE TITL                                    |             | 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 됩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01011      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |           | 1          | 1                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                    |
| PNL. SEC S.<br>NO. NO. T                    | 1 %C        | 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | × | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTROL    | POINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<-2    | SIGNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ONI XX     | INCOMPRESSIBLE | POTENTIAL | FLOW SOLUT | TION                                                        | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |
| 4444444<br>HUMANAVØ                         | ₹<br>}      | EXTRA11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 6446446<br>1466446<br>1466446<br>1466446<br>1466466<br>1466466<br>1466466<br>1466466666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 528722672<br>528822672<br>53882265<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>54865<br>5486<br>5486 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |           |            | 10.00000000000000000000000000000000000                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m.=-411010.45 |                    |
| よろごろご さごらごうしょ<br>りらえごうくご ふて 急やめ             | w 🛍         | EX STATE STA |   | SANGERONAND CONTRACTOR |            | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | PHILLIAN OUN ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                |           |            | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | A the second sec |               |                    |
| 10mendendendendendendendendendendendendende | L W         | CXTRAP<br>6XTRAP<br>EXTRAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | MONTH OR MAN OF THE PROPERTY O |            |                |           |            | 22.22.22.22.22.22.22.22.22.22.22.22.22.                     | Note the state of  |               | ·                  |

| PAGE 15 |                            | DOUGLAS AIRCRAFT COMPANY HIGHER ORDER FOTENTIAL FLORE                                                                                                                                                                                                                                                                            | FUNDAMENTAL O | OLUTIONS                                    | CANDANA CO CO TA                                      | 11, JUL 17, 1983                      |
|---------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------|
| CASE    | CASE TITLE:<br>PAGE TITLE: | HAINGOZYF: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION.  INTEGRATED PRESSURES                                                                                                                                                                                                                                                |               |                                             |                                                       |                                       |
| TYPE    | TYPE SEC NV                | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                            | ETA 9         | SECTCL SECTCD                               | CD ASTRIP                                             | CIRCUTM                               |
| SRFV    | ~                          | 1-666.19531-213.88036-185.745541209.33381 319.21411 317.92338<br>2-485.44434-181.86781-508.02612 890.33918 874.82298 873.92683<br>3-166.07339-123.24911-692.86182 324.059781195.685791198.873988<br>4.197.46822 -97.19611-691.35229-324.05781197.989481196.86964<br>4.57.46822 -97.19611-691.35229-324.367781197.989481196.86964 |               | 8.31702************************************ | 970 2.4462<br>1482 1.7956<br>148 0.6532<br>227 0.5452 | 0000<br>                              |
| SEC     | T. 101A                    | 6 692.36934 32.98204-184.28914жжжжжжж 319.39819 328.68164                                                                                                                                                                                                                                                                        |               | . 11792 67.34                               |                                                       | · · · · · · · · · · · · · · · · · · · |
| CONF    | CONFIG. TOTAL              | L 86.87728-543.38770HXHHHHHHH -8.455574781.98847431.97266                                                                                                                                                                                                                                                                        | =             |                                             |                                                       | ,                                     |

# ORIGINAL PAGE IS OF POOR QUALITY

```
us df 18
        3-8 HIGHER-ORDER LIFTING HELEGUS PROCESS ESS
(WITH OR WITHOUT INLETS)
LAST REVISIONS 15 JUL 1985
MORE OFTIONS:

-1 - DELETE MOS-SAVED MATRIX.

0 - RE-START FROM MOS-SAVE MATRIX.

1 - GEMERATE (PUNGAMENTAL) SOLUTIONS.

2 - COMBINE FUNGAMENTAL SOLUTIONS.

ENTER SELECTION (-1,0,1, OR 2) ...2
ENTER THE OLD "CASE-ID" (UPTO 8 CHARACTERS, BEALINKING WITH AN ALPHABETIC CHARACTER) ... CASEIS | MET! FURNISHED STATES - COSTO. SUBSICIAL FOUNDS.
ENTER A FLIM-SECTION SON OR CAR FOR MONE ...

(PARMALET OR FULLY GUALIFIED, CATALOGED MANE (NO GUOTES))

SON - tablidificationit.goe?f.dots

(SECRETRY SATAGET FOUND, COPY IN PROCRESS ...)

TEMPORARY COPY CREATES: SON - TSOTSSF.TEMPCEON.SOT1885.T182008
FLAG BATAGET 'TSOTTOF, GASTF, MODEZ, FLAGS' NOT FOLDO. OPTIONS ARE ...

G.A. ... CREATE IT NEW, GR
SYTEM NEW FLAG BATAGET (FULLY QUALIFIES), NO QUOTES)

SHITM OPTION (C.A. OR BATAGET NAME) ...
                                 E SURPRIT (.LE. 2000-OFLUX PRINCIS).
                                                                                                                  (10000,1)
vc (11 CC
 ALFUNC(), SETAC() - REDUCESTED ANALES OF ATTACK AND VAN (IN SECREES).

WINF() - PROCESTREAM SPEED.

WINF() - REPERRICE SPEED (FOR OF CALCULATION).

UC(10070, I) - REDUCESTED FLUX VELOCITY AT THE ITM FLUX SECTION.

CC(10070, I) - CONSIDERION CONSTRUT FOR THE ITM FLUX-GENERATING FUNCAMENTAL SOLUTION.
                                              ESTED MIGLES OF ATTACK AND YOU (IN DEGREES).
  BITTER UPDITES, OR "LIST", OR "RESTORT", OR "HELP" (FOR HPASHE FLAGS), OR C/R MICH DOLE
 Willerincongressible combination results for the 78-panel inlet.
  ENTER UPDATES, OR "LIST", OR "RESTART", OR "HELP" (FOR HPRINT FLAGS), OR CAR MEN BONE
  120-1, 190-1, acoub-2, at place 0, 5, ve 1.3, 1.6
  ENTER UPDATES, OR "LIST", OR "RESTART", OR "NELP" (FOR INVINT FLASS), OR C/R MICH BOILE
```

Figure 26. TSO submittal for DF12, Mode 2, for the 72-panel simple inlet check case.

## ORIGINAL PAGE IS OF POOR QUALITY

```
NOW COPYING 'TROTTOF, GOETF, RODER, FLAGS'
TO A TEMPORARY BATASET FOR USE IN THE BATCH SUBMITTAL ...
ON-BOOM 'P/U' (PRESSURE/VELOCITY) BATAGET WILL SE CREATED ...
ENTER BATAGET HATE
(C/R FOR BON-TSOTIOF.PU.GOZTF.FOSEZ.ON)
TECH
'TSOTIOF.PU.GOZTF.ROSEZ.ON' IS A NEW BATAGET
 JOB CLASS SPTIONS:

GA FOR MON-SEF AMES

POR SEFERMES (CHEAPER)

FOR BACKGRO-SEFERMES (CHEAPEST)
SELECT JOB CLASS .4.3
 CAR FOR: SYSOUT :
  DA ME BUNKTI COI . O
   SPTIGHTS: TOO GILLINE FRAMESICO) DEDUK TEST
                              LAST UPDATE: 7/00/00(MIC)
         "METALET TOO" TO DESECT PLATE TO ON-LINE BATAGET FOR DESPAY.
"METALET WILLIAM" FOR INTERMETIVE EXECUTION
    SELECT VIEWS
         (1)
(2)
(4)
(5)
(6)
(7)
(8)
(10)
(11)
6/R
                             OUTSIDE PROOF 45 DES
                    SPECIFY YOUR OUR
     ENTER THE SESSION VIEWS, SEPARATED BY SPACES (OR C/R)
```

Figure 26. Continued.

### ORIGINAL PAGE IS OF POOR QUALITY

```
YOU NAV SELECT UP TO 40 GEORGIBY SECTIONS TO BE PLOTTED FROM YOUR BATAGET.
ENTER THE SESIMED SECTIONS, SEPARATED BY SPACES (C/R FOR ALL)
ENTER WEEF (TO BE USED TO HORMALISE VELOCITIES)
(HOTE) WEEF - 0.9 WILL PLOT ALL VECTORS AS UNIT VECTORS)
(C/R FOR SEFAULT - 1.0)

WEEF
 ENTER LENGTH OF UNIT VECTOR IN GASTERS (NOTE: PAGE USSTM - 4K RASTERS) ...
(G/R FOR SEFAULT - 184.0)
LENGTH (
 CLASS IS "SEFER", NETWORKED TO: HSSF1273
ENTER INPUT JOB STREAM!
 THE FOLLOWING JOB WILL SEND THE PLOTS TO THE BIC COMPOSI
  JOB HOSFP1T3(JOSGGGG) SUBMITTED
 30 YOU WISH TO SUBSIT A (HETWORKED) "ISOPLOT" OF THE ON-BORY PAU BATRACTY (Y OR CAR) . ...
               CONSTRUCTOR CONTROL PARTY CONTROL CONT
        MITCH SUBMIT PROCEDURE FOR SUBFACE ISSUAR PLOTTING
OF ANDITOMY 3-8 GEOMETRIES
                                   LAST MENTED: 7/13/65
   OFTIGUE: TOO FRANCES(GO) BEDIES
             "IMPLOY THE" TO SERECT PLYTS TO GO-LINE BUTNET FOR IGNAM.
              COTER THE BESINES VIEWS, SEPARATED BY SPACES (OR C/R)
     SELECT PLOT TYPES!
                                  CP'S G.LY
SELTW-STOR'S CHLY
CF'S (SEP.) GMLY
MLL
      BITTER OFFICH (NO. OR CARY 1)
      SELECT OF CONTOUR RANGE AND ENCHEMENT!
                             REMERLIA CP PLOTTED
                 (1)
                 NO LINIT
       ENTER OFFICE (NO. OR CAS)
CLASS IS "SEFER" NETWORKED TO:
ENTER INPUT JOS STREAM:
        THE FOLLOWING JOB WILL SEND THE PLOTS TO THE SAC COMPOS!
        JOB HERFPETS(JOBOGGE1) SUBSTITTED
       ENTER INPUT JOB STREAMS
JOB PROMITTERS AND ...
JOB PROMITTERS AND ...
//GBF1ET3 JOB & CPUL'S) ID(E.) LINES(40) RESCLACE(A)
//SET RETID-TIESSOR, MODED-0,
//S RELEASE-(M30FP1T3, M30FPET3)
//SMAIN CLASS-BACKGRO
JOB M30F1ET3(JOBSOR??) SUEPTITED
REASY
```

Figure 26. Concluded.

```
Figure 27(a). Alternative input dataset for DF12, Mode 2, for the 72-panel
                    simple inlet check case.
       //×
             PC-PATCH FITTING FOR: TSOT3DF.H31H.G027E.DATA
       //×
       //×
       //PCPATCH EXEC PGM=H31K,PARM='1,0,0',REGIOH=1000K
//STEPLIB DD DSN=TSOT3DF.DMF.LOAD,DISP=SHR
//FT01F001 DD DSN=TSOT3DF.TEMPGEOM.D080985.T154000,
      //FT06F001 DD SYSOUT=A
//FT11F001 DD UNIT=SYSDA, SPACE=(TRK, (30, 10)),
DCB=(RECFM=VBS, BLKSIZE=19069)
                        DISP=(OLD, DELETE)
       //FT12F001 DD UNIT=SYSDA, SPACE=(TRK, (30,10)), DISP=(NEW, PASS), DCB=(RECFM=VBS, BLKSIZE=19669)
      //×
       //¥
            3-D HIGHER-ORDER LIFTING NEUMANN SOLUTION.
       //×
       //¥
                     (WITH INLET CAPABILITY)
       //×
      //×
                  MODE 2, CASEID: G427F
      //×
      //HEUMANN FYEC PGM=MAIN, REGION=4000K
//LTEPLIB DD DSN=TSOT3DF.DF12.LOAD, D
                   DD DSM=TSOT3DF.BF12.LOAD.DISP=SHR
      //FT02F001 DD DSN=TSOT3DF.G027F.FUNDSOLN.
      //
                       DISP=SHR
      //X
      //* PV DATASET:
      //FT03F001 DD DSH=TS0T3DF.PV.G027F.MODE2.ON,
                       DISP=(HEM, CATLG), UNIT=TSODA, SPACE=(TRK, (18, 18), MLSE)
      11
      //X
      //FT04F001 DD UNIT=SYSDA.DCB=(RECFM=VBS.BLKSIZE=19069),
      SPACE=(TRK,(1,10))
//FT05F001 DD DSN=T50T3DF.DF12.D080985.T154000,DISP=(OLD,DELETE)
      //FT06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=169,BLKSIZE=16900)
//FT08F001 DD UNIT=SYSDA,DCB=(RECFM=VBS,BLKSIZE=19069),
      // SPACE=(TRK,(1,10))
//FT09F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                       SPACE=(TRK,(1,10)
      //FT18F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                       SPACE=(TRK,(1,10)
      //FTI1F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                       SPACE=(TRK,(1,10)
      //FT12F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                       SPACE=(TRK,(1,10);
     //FT13F001 DD UNIT=SYSDA.DCB=(RECFM=VBS,BLKS1ZE=19069),
                       SPACE=(TRK,(1,10)
     //FT14F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
     SPACE=(TRK,(1,10))
//FT15F001 DD UNIT=SYSDA.DCB=(RECFM=VBS.BLKSIZE=19069),
                       SPACE=(TRK,(1,10)
     //FT16F001 DD UNIT=SYSDA, DCB=(RECFM=VBS, BLKSIZE=19069),
                       SPACE=(TRK,(1,10))
     //FT17F001 DD UNIT=SYSDA, DCB=(RECFM=VBS.BLKSIZE=19069),
                       SPACE=(TRK,(1,10)
     //FT18F001 DD UNIT=SYSDA, DCB=(RECFM=VBS.BLKSIZE=19069),
                       SPACE=(TRK,(1,10))
     //FT20F001 DD DSN=*.PCPATCH.FT12F001,
                       DISP=(OLD, DELETE)
Figure 27(b). Mode 2 JCL stream for the 72-panel inlet check case.
```

```
JCL TO VECPLOT A 3-D PRESSURE/VELOCITY FILE

//*

//VECPLOT EXEC PGM=UVECPLT, REGION=950K
DD DSN=TSOT3CP.H17.LOAD, DISP=SHR
DD *

//FT05F001 DD SYSOUT=A, DCB=(RECFM=VA, BLKSIZE=141)

//FT13F001 DD DSN=TSOT3DF.PV.G027F.MODE2.ON,
DISP=SHR
DSN=ROUTE.DAC.GCMIF.BON.FL0060.VECPLT,
DISP=(MEN, KEEP),
UNIT=TAPE16.LABEL=RETPD=10, DCB=DEN=3
```

Figure 27(c). JCL stream to execute the VECPLOT program.

```
//*

//X

//X

//STEPLIB

//FT05F001

/*

//FT06F001

DD

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)

//FT18F001

DD

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)

//FT18F001

DD

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)

//FT18F001

DD

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)

//

DSN=TSOT3DF.PV.G027F.MODE2.ON,

DISP=SHR

DSN=ROUTE.DAC.GCMIF.BON.FL0060.ISOPLT,

DISP=(NEW,KEEP),

UNIT=TAPE16,LABEL=RETPD=10,DCB=DEN=3
```

Figure 27(d). JCL stream to execute the ISOPLOT program.

| CA Se             |
|-------------------|
| •                 |
| •                 |
| U                 |
| _                 |
| -                 |
| 2                 |
| =                 |
| -                 |
| •                 |
| inlet check       |
| 7                 |
| =                 |
| _                 |
| =                 |
| •                 |
| •                 |
| =                 |
| `_                |
| •                 |
| =                 |
| simple            |
|                   |
| _                 |
| •                 |
| Ě                 |
| -                 |
| ō.                |
| •                 |
| ~                 |
| -                 |
|                   |
| ā                 |
|                   |
| +-                |
| _                 |
| 톳                 |
| Ģ                 |
| -                 |
| from the 72-panel |
|                   |
| -                 |
| ē                 |
| _                 |
| - 5               |
| output            |
| _                 |
| Sample            |
| _                 |
| _                 |
| E                 |
| 4                 |
| Ù                 |
|                   |
|                   |
|                   |
| α,                |
| ~                 |
| _                 |
| •                 |
| •                 |
| =                 |
|                   |
| Ftours            |
|                   |

| 1111            | NEUMANN SECTION |                                                                                                                          |
|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| 17 PE           | #LCX            |                                                                                                                          |
|                 | CURVED          | GONDS.                                                                                                                   |
| X-CHERS         | CURVED          | NPAT # 6                                                                                                                 |
| MCURV           | •               | PROGRESS<br>CREATED.<br>DS, I/O                                                                                          |
| 2               | 1               | NON IN SECON                                                                                                             |
| 2               | •               | CREATI<br>ATA HAS                                                                                                        |
| SECTA & PATCHES | •               | UNFORMATTED DATABET CREATION IN PROGRESS UNFORMATTED PATCH DATA HAS BEEN CREATED. NI TIME USAGE CPU= 0.07 SECONDS, I/O = |
| SECT            | -               | UNFORMA<br>UNFORMA<br>TIME US                                                                                            |

| COMBINATION RESULTS (              | PAGE 11 DOUGLAS AIRCRAFT COMPANY MIGHER ORDER FORTHE 72-PANEL INLET.  CASE TITLE: INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.  TITLE: INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.  FLAG PRESENT DEFAULT | DOUGLAS AIRCRAFT COMPANY MIGHER ORDER TOTENTIAL FIGHT TOTAL | PRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.<br>FLAGS | 72-PANEL INLET.      |      |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------|------|
|                                    | OMPRESSIBLE<br>UT FLAGS<br>UT FLAGS<br>IBLE COMBINA                                                                                                                                                                                   | RCRAFT COMPANY MIGH                                         | COMBINATION RESULTS                                            | NIIGN RESULTS FOR TH |      |
| PAGE 1111E: INCOMPAGE TITLE: INPUT |                                                                                                                                                                                                                                       | PAGE                                                        | CASE T                                                         | 71716=               | FLAG |

| FLAG DEFINITION  | 0=INCOMPRESSIBLE, 1=COMPRESSIBLE.<br>0=NO OFF-BODY POINTS INPUT ON A SEPARATE DATASET (.LE. 2000-#FLUX PANELS).<br>0=NO OFF-BODY POINTS, 1=OFF-BODY POINTS INPUT ON A SEPARATE DATASET (FOR "ISOPLOT", ETC.).<br>0=DO NOT SAVE ON-BODY P/V DATASET, 1=SAVE ON-BODY P/V DATASET (FOR "ISOPLOT", ETC.).<br>0=DO NOT SAVE FLUX-SECTION P/V DATASET, 1=SAVE "QUINFLOT" DATASET. |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DEFAULT<br>VALUE | 499967                                                                                                                                                                                                                                                                                                                                                                      |  |
| E = 1            | ** **                                                                                                                                                                                                                                                                                                                                                                       |  |
| PRESENT          | •                                                                                                                                                                                                                                                                                                                                                                           |  |
| FLAG             | COMPRS<br>IPPR 132<br>IPPV 132<br>IPPV 10EN<br>IOWN HCOMB                                                                                                                                                                                                                                                                                                                   |  |

| CDEG.   CDEG |                |          |              |            |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--------------|------------|-----------|
| VINE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - L            | <b>-</b> | ខ            | 1.3000     | 1.5000    |
| VINE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LE KOTA        |          | <b>20</b> 0> | C( 1,1)=   | IC( 2,1)= |
| COMB   Company   Company |                |          | VREF         | 7 .0000    | J. 6000 V |
| CDEG.)   C | EAM CONDITIONS |          | VINF         | <br>1.0000 | 1.0000    |
| ICOMB 1: 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FREESTR        | (DEG.)   | BETAC        | <b>.</b>   | 9.        |
| ICOMB : 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>&gt;</u>    | (DEG.)   | ALPHAC       | <br>•      | 5.00      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |              |            | 1COMB= 2: |

ALPHAC(), BETAC() = REQUESTED ANGLES OF ATTACK AND YAW (IN DEGREES).
VINF() = FREESTREAM SPEED.
VREF() = REFERENCE SPEED (FOR CP CALCULATION).
VC(ICOMB,I) = REQUESTED FLUX VELOCITY AT THE ITH FLUX SECTION.
CC(ICOMB,I) = COMBINATION CONSTANT FOR THE ITH FLUX-GENERATING FUNDAMENTAL SOLUTION.

SECTION SUMMARY: SNLIFE 6, SLIFTE 8, SMAKE: 0, SDBLTE 6, SSRFVE 1, SFLUXE 8

| 1¥                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |        |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|--------|
|                                                                            | ZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e e      | #000<br>••••                              | ı      |
| SOLUTIONS<br>SOLUTIONS                                                     | <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                           | •      |
| JOLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOM : COMBINATION SOLUTIONS | SSIBLE COMBINATION RESULTS FOR THE CATACHTER TO THE CATAC |          |                                           | 7.0    |
| POTENTIAL PLO                                                              | ECTION PANEL FORMATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 3      |                                           | 0.2617 |
| HICHER ORDER                                                               | 30LTS FOR INE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                           | -0.422 |
| RAFT COMPANY                                                               | MBINATION RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | . 100 00 00 00 00 00 00 00 00 00 00 00 00 | 0.3528 |
| DOUGLAS AIRC                                                               | INCOMPRESSIBLE CO<br>FLUX SECTION PANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×        |                                           |        |
| ۳                                                                          | 1111E:<br>1111E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NI NI :: |                                           | 4 W.   |
| PAGE                                                                       | PASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHI      |                                           |        |

Figure 28. Continued.

The second of th

| PAGE 3                                                                 | _     | '              | DOUG                                   | 178    | AIR  | CRAFT      | 5<br>0<br>0 | PAN        | HIGH | JER G | RDER | P071       | ENTIAL                                                     | 18    | 800         | DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOW : COMPANATION SOLUTIONS | 200   | LUTIONS                                                                                               |   |
|------------------------------------------------------------------------|-------|----------------|----------------------------------------|--------|------|------------|-------------|------------|------|-------|------|------------|------------------------------------------------------------|-------|-------------|------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------|---|
| CASE TITLE:                                                            |       | INCOR<br>VATOR | E .                                    | 22     | - E  | DIATE      | MAT         | ZZ<br>ZX   | FORT | 201   | DAT  | 72.        | INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PAREL INLET. | E 67. |             | PRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.                        |       | ITLE: INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PAMEL INLET.                                      |   |
| "ORDERED SECTIONS" ("MAKE" SECTIONS POSITIONED AFTER "LIFT" SECTIONS): | SEC.  | T I OMS*       | Ē                                      | AKE.   | . SE | CTION      | 2 5         | 13111      | ONED | AFTE  | 2    |            | <b>SE</b> CT 10                                            | ŝ     | !<br>!<br>! |                                                                              | )<br> | }<br>2<br>2<br>2<br>2<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | ! |
|                                                                        |       | 9              | SOURCE (PERCENT)                       | C E    | CEN  |            | SMALL LOGS  | SMALL LOGS | SO   |       | DE V | SATES      | (CPERCI                                                    | ENT?  | MEAR        | EDGE VORTEX(PERCENT) ONEAR EXTENDED LINE                                     | 5     | 1 K K                                                                                                 |   |
| HEAR<br>Intermediate<br>Far<br>Super Far                               | IATE  |                | 200 ( 01.9)<br>154 ( 10.1)<br>0 ( 0.0) | 2000   |      |            |             |            |      |       |      | •          |                                                            |       | †<br>†<br>† |                                                                              |       | )<br>                                                                                                 |   |
| TOTAL                                                                  |       |                | *                                      |        |      |            |             |            |      |       |      | •          |                                                            |       |             |                                                                              |       |                                                                                                       |   |
| VAFORM TIME USAGE: CPU =                                               | IME L | JSYGE:         | 5                                      | *<br>> |      | 0.677 SEC. | SEC         | .•         | 170  | 1.0 = | -    | 1.048 SEC. | Ec.                                                        |       |             |                                                                              |       |                                                                                                       |   |

TOTAL NUMBER OF RIGHT-MAND SIDES: MRHS = 3.

| THURSDAY, JUL 16, 1965                                                                                                                                                                              |                                                                                                                 |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|
| DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOM: COMBINATION SOLUTIONS THURSDAY, JUL 16, 1765 FLOCMPRESSIBLE COMBINATION RESULTS FOR THE 72-PAMEL INLET. FLOCMB. FLOW COMBINATION MATRIX DATA. | 1) COMBINATION CONSTANTS  0.6 0.6 0.6 0.0 1.01564 1.01564 3) COMBINATION COMSTANTS  0.0 0.0 0.0 0.0             | TOOL N CHART H D):             |
| DOUGLAS AIRCRAFT COMPANY HI<br>AFRESSIBLE COMBINATION RESUL<br>18. FLOW COMBINATION MATRIX                                                                                                          |                                                                                                                 |                                |
| PAGE 4 CASE TITLE: INCOM                                                                                                                                                                            | ROW RHS  2 0.0 3 0.0 4 1.3000 5 1.3000 6 4 1.3000 CC (J) 2 0.0 CC (J) 2 0.0 N (= 4) EQUATIONS ROW RHS 2 0.06716 | IFLAG (J) = CALCULATED FLOW CO |

Figure 28. Continued.

| 1985       | ;                   |                                         |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
|------------|---------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|------------|
| DEGR.      | 1                   |                                         |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
| 10.0 =     | 1<br>1<br>1<br>1    | -<br>-                                  | 0041139000000000000000000000000000000000                                                  | 74651<br>78964<br>74964<br>74964<br>73811<br>73811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00111110<br>00111110<br>00111110<br>00111110<br>00111111                         | 45425<br>41231<br>73095<br>73944<br>73944                   | 645<br>645<br>645<br>645<br>645<br>645<br>645<br>645<br>645<br>645               | 7904                                                   | . 0263896<br>. 003896<br>. 035708<br>. 068974                |            |
| SDAY       | - 1                 |                                         | 000000                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000000                                                                          | 70000                                                       | 0000000                                                                          |                                                        | 24684<br>2666                                                |            |
| THUR.      |                     | 1 NO.                                   | 0.978984<br>0.978509<br>0.98787<br>11.01/723<br>11.08818<br>11.08418<br>11.08418          | 24198<br>28528<br>28196<br>2527<br>2527<br>2527<br>2538<br>3538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.979096<br>0.986727<br>0.994038<br>1.017786<br>1.054912<br>1.364855<br>1.244902 | .85856<br>.38286<br>.32826<br>.32826<br>.31887              | 0.9791133<br>0.986743<br>0.986243<br>1.017663<br>1.057663<br>1.06463<br>0.641396 | 1000000<br>10000000<br>10000000<br>10000000<br>1000000 | 0.98672<br>0.98672<br>0.99805<br>1.01769<br>1.0391           |            |
| 4S ALPHACE |                     | FLOW SOLUTI                             | 0.0028<br>0.0028<br>0.00086<br>0.00086<br>0.00086<br>0.0088<br>0.0088<br>0.0088<br>0.0088 | 1.00 kg 20 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000048<br>0.000048<br>0.000916<br>0.006918<br>0.006918<br>0.006918             | 20000<br>20000<br>20000<br>20000<br>20000<br>20000          |                                                                                  | 00000000000000000000000000000000000000                 | -0.001037<br>-0.000834<br>-0.000834<br>0.000933<br>-0.000942 |            |
| SOLUTION   |                     | ENTIAL                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000000000000000000000000000000000000                                           | 00000000000000000000000000000000000000                      | 00000000000000000000000000000000000000                                           |                                                        | 000000000000000000000000000000000000000                      |            |
| 8          | į                   | 5                                       |                                                                                           | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                             |                                                                                  | 777-77-                                                |                                                              |            |
| COMBINATI  |                     | A C X X X X X X X X X X X X X X X X X X | **************************************                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  | 200000                                                      |                                                                                  |                                                        |                                                              |            |
| -          | ا ن                 | COPPR                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | enesari                                                                          |                                                             | 88464W                                                                           | - W W                                                  | 2000<br>2000                                                 |            |
|            | 1 1                 | Z 1 X                                   | 00000                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
| آ ہے       | 3                   |                                         |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
| ER POTENT  | HE 72-PAN<br>OF 2   | SIGMA                                   | 20000                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 00000000000000000000000000000000000000                                           |                                                        |                                                              |            |
| 8          | <b>~</b> !          | - ·                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                              | 22222                                                       |                                                                                  |                                                        | 00000<br>00000<br>00000<br>00000                             |            |
| in i       | TS FO               | ^ i                                     |                                                                                           | 60000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200000                                                                           | 100000                                                      | 100000                                                                           | 2000000<br>2000000<br>2000000                          | 10000                                                        |            |
| E E        |                     | <u> </u>                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                                                                            |                                                             | 00000                                                                            | 000000                                                 | 0000                                                         | <u>.</u> : |
| FT COMPANY | ATION RE<br>SOLUTIO | MTROL POINT                             | 31758<br>31702<br>31419<br>31706                                                          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |                                                                                  | 146440<br>146440<br>146440                                  | 40000000000000000000000000000000000000                                           | 1.11.01.01.01.01.01.01.01.01.01.01.01.01               | 1.162411<br>1.162411<br>1.16746111<br>1.169440111            | Continued  |
| AIRCRA     | BLE COND            | × COM                                   | 676113<br>685413<br>685468<br>129566<br>129667<br>12967<br>196219                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 623469<br>623469<br>623469<br>7496849<br>7496849<br>7496819                      | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                       |                                                                                  | 4                                                      | 4.076117<br>3.007473<br>1.423469<br>0.655896                 | gure 28.   |
|            |                     |                                         | 40000                                                                                     | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  | ~~~~~~                                                      |                                                                                  |                                                        |                                                              | Ξ          |
| 8          | NO NO               | 2                                       | TRA                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; 5                                                                              | X X X                                                       | ₹ ₹                                                                              | EX TE                                                  | <b>*</b>                                                     |            |
|            |                     |                                         | . >                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
| •          | 171.E               | EC 5                                    | ; <b>~</b>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                             |                                                                                  |                                                        |                                                              |            |
| PAGE       | SE 1                | 2 . S                                   |                                                                                           | 19099 HIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MARGAL.                                                                          |                                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                            | NUMBER OF STREET                                       | NW N 4                                                       | •          |

| •          |
|------------|
| Continued  |
| 4          |
| 3          |
| =          |
| -          |
| =          |
| 돗          |
| ્રવ        |
| _          |
|            |
|            |
|            |
| œ.         |
| 38         |
| 28.        |
|            |
|            |
|            |
|            |
|            |
| Figure 28. |

|             | DEGREES          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ORIGINAL PA<br>OF POOR OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IGE IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| en ev       | BETAC: 0.0       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A CONTROL OF THE CONT |
| THE         | 0.0              | 1 1-1             | 200047000<br>000470000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 984<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UTION       | ALPHAC           | TAL FLOW SOLUTION | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ON NO       |                  | POTENT            | -20-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · COMBINATI |                  | INCOMPRESSIBLE XX |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PPANAMANAMANA<br>PRINCIPAL PARAMANA<br>BARAMANAMANAMAN<br>PERAMANAMANAMAN<br>PERAMANAMANAMANA<br>PERAMANAMANAMANA<br>PERAMANAMANAMANAMANAMANAMANAMANAMANAMANAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITIAL FI    | 3                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7774888148844<br>64464466666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ORDER POTE  | R THE 72-P       | 2018              | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HISHER      | RESULT - O       | 8                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RAFT COM    | MBINAT<br>FLOW S | HTROL P           | 1.1508.420<br>1.1508.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.008.420<br>1.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OUGLAS AIPC | SSIBLE CO        | × :               | 0.1066280<br>0.1066280<br>0.65804080<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040<br>0.658040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00.00.00.00.00.00.00.00.00.00.00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2           | <b>62 W</b> (    | U 10              | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXTRACTOR STANDS OF STANDS | EXT PAGE STANDS  |
| •           | ITE: C           | EC SEC.           | 1 SRFV 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXTR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PAGE        | PAGE TI          | PN                | イケイケイカウ<br>中ケイケイクタ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ๛๛๛๙ฅ๔๓๑๛๗๛๐<br>๔๚๚๚๚๚๚๚๚ฅ๚๛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>しょうかかからなる</b><br>こころもならであるできた                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 1985<br>EES                                           |                                         |                                                                           |                                                                                       |             |                                       |
|-------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|---------------------------------------|
| JUL 14, 198<br>0.0 DEGREES                            |                                         |                                                                           |                                                                                       |             |                                       |
| 10.0                                                  | 1                                       | CIRCULTN                                                                  | 00000                                                                                 | e.          |                                       |
| ALPHAC= 0.0 , BETAC= 0.0 DEGREES                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ASTRIP C                                                                  | 2.4462<br>1.7936<br>0.6832<br>1.5452                                                  | 2.0418      | •                                     |
| ALPHAC= 0                                             |                                         | SECTOD                                                                    | -6.02133<br>-0.016133<br>-0.00873<br>-0.00478                                         | -0.01780    |                                       |
| CHER ORDER POTENTIAL FLOW: COMBINATION SOLUTIONS      | ;<br>;<br>;<br>;                        | SECTOL                                                                    | - 10.00401<br>- 0.00401<br>- 0.00401<br>- 0.00401<br>- 0.00401                        |             |                                       |
| COMBINATIO                                            | ;<br>;<br>;<br>;<br>;                   | # # # # # # # # # # # # # # # # # # #                                     |                                                                                       | 0.31702     |                                       |
| FLOW :                                                |                                         | CYAW                                                                      |                                                                                       | 12.75369    | 12.75369                              |
| R POTENTIAL<br>E 72-PANEL                             |                                         | . BOVZ, CREF<br>CROLL                                                     |                                                                                       |             | 12.75569                              |
| DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOM: |                                         | BASED UPON INPUT VALUES OF AREF, BOV2, CREF>  CL CD CSF CPITCH CROLL CYAN | 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                |             | # # # # # # # # # # # # # # # # # # # |
| BOUGLAS AIRCRAFT COMPANY HI                           | INTEGRATED PRESCRES                     | INPUT VALL                                                                | -0.43317<br>-1.16265<br>-1.61727<br>-1.61728                                          | -0.43317    | # # # # # # # # # # # # # # # # # # # |
| AS AIRCRAF                                            | PRESSURES                               | BASED UPON                                                                | -1.61661 -9.90872 -<br>-1.18663 -9.90908 -<br>-6.43172 -0.00877 -<br>6.43171 -0.00877 | -0.00572    | -0.05299                              |
|                                                       | INTEGRATED                              | 10->                                                                      | 111111111111111111111111111111111111111                                               |             | H                                     |
|                                                       | 1                                       | SEC NV                                                                    |                                                                                       | 5<br>TOTAL  | TOTAL                                 |
| PAGE 7                                                | PAGE TITLE                              | TYPE SEC NV                                                               | SRFV 1                                                                                | SECT. TOTAL | CONFIG. TOTAL                         |
|                                                       |                                         |                                                                           |                                                                                       |             |                                       |

| 552 0.1076 52<br>553 0.1076 53<br>554 0.0078 54<br>555 0.1076 55<br>555 0.1076 55<br>556 0.1076 55<br>557 0.0078 55<br>558 0.1076 55<br>558 0.1076 55<br>559 0.1076 55<br>550 0. | . !<br>.s. !  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81 1<br>81 1  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| Continue                                                                                                                                                                                                                                                                                    |               |                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEWNACHAOOGUA                           | 44404<br>44404                          |
| Sec Sec   Act   Common Portion   Commo                                                                                                                                                                                                                                                                                   |               |                                         | 04000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 477<br>374<br>221<br>632<br>632         |
| SEC SEC   Constitution   Constitut                                                                                                                                                                                                                                                                                   | )             | HOOGHOUP HANNIN                         | goooggenennn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 99999                                   |
| STATE   CONSTITUTE   CONSTITU                                                                                                                                                                                                                                                                                   |               | 11: 111:111                             | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44110000CUUNDOO                         |                                         |
| STATE   CONTINUE CO                                                                                                                                                                                                                                                                                   | 9             |                                         | はころのでは 4 てのでのでする                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1500111001110000<br>15001110011100000   | 80 m 80 m 70 m 80 m 80 m 80 m 80 m 80 m |
| Note                                                                                                                                                                                                                                                                                      | 6 8           | ด้ดีด้ออกจุทธเกเกเกเ                    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e-c-c-con4ru                            | <b></b>                                 |
| 1 Sept.   1 Se                                                                                                                                                                                                                                                                                   |               | BUNN48060HN40N                          | てんきなアミアララミュアの中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Aundananananananan                    | 00000                                   |
| STATE   STAT                                                                                                                                                                                                                                                                                   | ו או ניב      | \$040NNVANVA0448                        | NOCOPONAL 40644<br>NUMBOROMOMOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NANNUNALANANANA<br>NANNUNALANANANA      | 15900                                   |
| ### FITTEE INCOMPRESSILE CONTROL FORTY = ->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <: : 3>:      | 000000000000000000000000000000000000000 | 00000448660000<br>77747410801000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 444NUUUVUUU                             |                                         |
| SAC SEC   MCOMPRESSIBLE CONSIDERATION FRAULTS FOR THE T2 FAMEL THEFT.   MCOMPRESSIBLE FOR EACH                                                                                                                                                                                                                                                                                   | =             | 000000000000                            | 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000000000000                          |                                         |
| STATE   NUCLEAR   NUCLEA                                                                                                                                                                                                                                                                                   |               | ちろうとももありらまりまる                           | るアンちゅうしゅうゆょうごう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40~5000~950~90                          | \$\rho 4.4\rho 20<br>\$\rho 10.4\rho 10 |
| SRC SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : <b>:</b>    |                                         | アファ 5000 mm 2000 mm | るちろうなないようなものののの                         | MMMMA                                   |
| EXTRACT TO THE TOTAL TOTAL FOR THE TATE THE TATE THE TATE THE TOTAL FOR THE TATE THE                                                                                                                                                                                                                                                                                 | 5             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| EXTRACT   1 SRFV   1 STORY   1 SRFV   1                                                                                                                                                                                                                                                                                 |               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| ### CONSTITUE CONDITION REGULTS FOR THE 72-AMELIANTY.  ### CONSTITUE CONDITION FEBULTS FOR THE 72-AMELIANTY.  ### CONSTITUE CONTROL FOINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44444444444444444444444444444444444444  | 40000<br>40000                          |
| SEC SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # # # P       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ••••                                    |
| SEC SEC.   INCOMPRESSIBLE COMMINES   SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8           |                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 404444444                               |                                         |
| SEC   SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 0000                                    |
| NEC                                                                                                                                                                                                                                                                                    | · · · >       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000000000                             |                                         |
| ### FITTLE: INCOMPRESSIBLE CONSTRUCTOR   MAINER                                                                                                                                                                                                                                                                                  | 15 ! !        | 11111                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | )<br>0040                               |
| SEC                                                                                                                                                                                                                                                                                    |               | <b>しゅうかかんせきせきせ</b>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ちょうちょうこうちゅう                             |                                         |
| ### TITLE: COMPANDED ON PEDDA ALION RESULTS FOR THE COMPANDED ON PEDDA ALION FOR THE COMPANDED ON PEDDA ALION FEBRUAR PROPERTY OF THE COMPANDED ON PEDDA ALION FOR THE COMPAND ALION FOR TH                                                                                                                                                                                                                                                                                 |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 2004                                    |
| TITLE: INCOMPRESSIBLE CONTROL FOLNIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 부씨            | *****                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| SEC                                                                                                                                                                                                                                                                                    | 1251 <b>7</b> | : ふりょうりいんほうりかかりり                        | NACHANCHEGORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - CAPSUMENTFRATT                        | <b>4</b> 4654                           |
| EXTRAP: 4.007472 0.317520 1.1.  SEC SEC. 1V 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | DONE-CHANGEGROOM                        | 40000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11010101075555555                       | 46600                                   |
| EXTRAP: 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1321 1        |                                         | はははははなってファファブ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 00000                                   |
| 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 4 0 1 -     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | たりのちゅうらゅうりっちゅう                          | M004N                                   |
| ### TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 2           |                                         | <b>キャプのからのちゅうしゅう</b><br>日とちアクランののののいしの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAUD-BOADANAN N                         |                                         |
| TITLE: INCOMPRESSIBLE CONDENSIBLE CONDENSI                                                                                                                                                                                                                                                                                 |               | **************************************  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 44949                                   |
| TITLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1541 8        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | エフタウトこの名とてりらてし                          | <b>まてゆり</b> て                           |
| TITE TARESTORY TO SEE THE SEE                                                                                                                                                                                                                                                                                  | IMOI IX       | 14480NNNNNNNV441                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *****************                       | 4 PM SO                                 |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 45 1 1      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 004-01-00-04-00                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4401          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Σ∺!           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A A L L L L L L L L L L L L L L L L L L | A A                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 2          |                                         | EX S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X X                                     | EX 4                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —∪! . <u></u> | ı >                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - "                                     | _                                       |
| MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| MM MANANDADADA NAMADADANA NAMADANANA COSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 .           | i e                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |

Figure 28. Continued

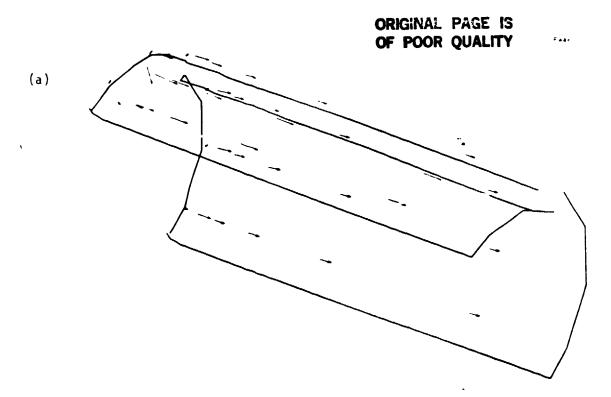
| DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOW: COMBINATION SOLUTIONS  INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.  INTEGRATED PRESSURES | P CIR                                                                        | 0.31702 -6.86898 -0.66070 2.4462 0.0<br>0.84797 -3.73963 -0.38347 1.7936 0.0<br>1.16085 -0.50667 -0.07389 0.6532 0.0<br>1.16085 0.44497 0.00296 0.5552 0.0<br>0.84797 3.48273 0.17222 1.4971 0.0<br>0.31702 6.62710 0.37176 2.0418 0.0 |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| INLET.                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                        | 22.60698                                |
| CHER ORDER POTENTIAL FLOW: CONTS FOR THE 72-PANEL INLET.                                                                                                      | , 30V2, CREF<br>CROLL                                                        | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                | 22.80655 2                              |
| HIGHER ORDE                                                                                                                                                   | JES OF AREF                                                                  | ######################################                                                                                                                                                                                                 | - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 |
| T COMPANY HI                                                                                                                                                  | CL BASED UPON INPUT VALUES OF AREF, BOVZ, CREF>  CL CD CSF CPITCH CROLL CYAM | -0.27009 -0.79585<br>-0.21380 -2.08905<br>-0.11313 -2.93179<br>-0.0552 -3.04773<br>0.11503 -2.32006<br>0.18207 -0.87061                                                                                                                | -12.01507                               |
| AS AIRCRAF                                                                                                                                                    | BASED UPON<br>CD                                                             | -6.27009 -0.75555-6.21380 -2.08903-6.11313 -2.931799 0.11503 -2.930006 0.16207 -0.870016                                                                                                                                               | -0.29450 -12.01567                      |
| DOUGL<br>INCOMPRESS<br>INTEGRATED                                                                                                                             | 10                                                                           | 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                  | 0.71935                                 |
| PAGE 10<br>CASE TITLE!                                                                                                                                        | TYPE SEC NU                                                                  | SRFV 1 22 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                         | CONFIG. TOTAL                           |
| 7 7 7                                                                                                                                                         | TYP                                                                          | S. 22                                                                                                                                                                                                                                  | CON                                     |

Figure 28. Continued.

Figure 28. Continued.

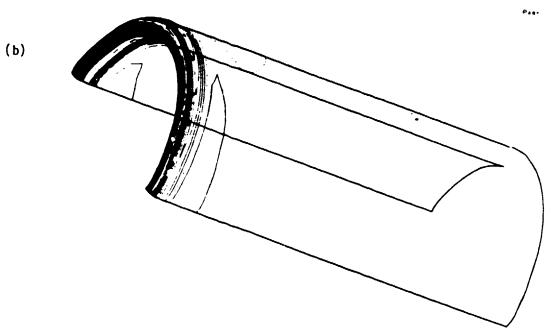
| E: INCOMPRESSIBLE CONDINATION RESULTS FOR THE 72-PANEL INLET.  SEC. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | NOI         | 1.4.7<br>1.6.6.7<br>1.6.6.7<br>1.6.6.7<br>1.6.6.7<br>1.6.6.7           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|------------------------------------------------------------------------|--|--|--|
| THE IV IU X OFFICIAL SOLUTION NUMBER 2 OF 2 SIGNA WHEN THE TABLE TO TH |                     | 110         | 792<br>792<br>792<br>792<br>792                                        |  |  |  |
| THE INCOMPRESSIBLE CONTROL POINTS>   I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 35          | 00000                                                                  |  |  |  |
| THE INCOMPRESS: BLE CONSTRAINT ON RESULTS FOR THE 72-PANEL INLET.  CONBINED OFF-BODY FLOW SOLUTION NUMBER 2 OF 2  CONBINED OFF-BODY FLOW SOLUTION NUMBER 2 OF 2  SIGNA VN  TO 408000 0.131906 0.482175 0.0 1.478413 1.478413 0.01284  TO 408000 0.482800 0.189321 0.0 1.478413 1.478413 0.01284  TO 408000 0.482800 0.189321 0.0 1.478413 1.478413 0.01284  TO 408000 0.482800 0.189321 0.0 1.52994 1.52994 0.00284  TO 408000 0.131906 0.462174 0.0 1.529144 1.529144 0.010991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ٠ بـ        | 000000                                                                 |  |  |  |
| COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2 OF 2  COMBINED OF EDONY FLOW SOLUTION HUNBER 2  | ;                   | TENT!       | 184461<br>884660<br>98466                                              |  |  |  |
| COMBINED OF FLOW SOLUTION RESULTS FOR THE 72-PANEL INLET.  COMBINED OF FLOW SOLUTION NUMBER 2 OF 2  COMBINED OF FLOW SOLUTION NUMBER 2 OF 2  I C CONTROL POINTS>   (< INCOMPRESSIBLE IN IU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                   | а. '<br>Ш   | 11111                                                                  |  |  |  |
| INCOMPRESS: BLE COMBINATION RESULTS FOR THE 72-PANEL INCOMPRESS: BLE COMBINATION RESULTS HE 2 OF 2 COMBINATION RESULTS HE 2 COMBINATION RESUL | 3<br>8<br>8<br>9    | ESSIB<br>VX | . 47061<br>47061<br>49220<br>32139<br>4143                             |  |  |  |
| INCOMPRESS, BLE COMBINATION RESULTS FOR THE 72-PAN  COMBINED OFF-BODY FLOW SOLUTION NUMBER 2 OF 2  COMBINED OFF-BODY FLOW SOLUTION NUMBER 2 OF 2  TO SOLUTION NUMBER 2 OF 2  TO SOLUTION NUMBER 2 OF 2  SIGNA  UNX 1 0 408000 0.131906 0.35566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.129321 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  O 408000 0.131906 0.133566 0.0  SOLUTION NUMBER 2 OF 2  SIGNA  SOLUTION NUMBER 2 OF 2  | EL INLE             | 3           | . 5.90<br>6.47<br>6.47<br>6.47<br>6.47<br>6.47<br>6.47<br>6.47<br>6.47 |  |  |  |
| COMBINED OFF-BODY FLOW SOLUTION NUMBER OFF-BODY FLOW SOLUTION NUMB | HE 72-PAN<br>2 OF 2 | SIGMA       |                                                                        |  |  |  |
| INCOMPRESS: BLE COMBINATION RECOMBINED OFF-BODY FLOW SOLUTION TO 1 1 0 408000 0 131906  LUX 1 1 0 408000 0 131906  LUX 1 1 0 408000 0 131906  S 0 408000 0 352806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                  | <b>7</b>    | .48217<br>.12932<br>.12932<br>.12932<br>.45363                         |  |  |  |
| INCONPERSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NATION RE           | POINT       | . 131906<br>. 352506<br>. 482990<br>. 482990<br>. 352806<br>. 131906   |  |  |  |
| TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S.BLE               | ×           | 44444<br>000000<br>888888<br>00000                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 8 111             | 2 :         | ~~np4n4                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INCO<br>COLO        | 2:          |                                                                        |  |  |  |
| HH1 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | SEC<br>NO.  |                                                                        |  |  |  |
| 04 4 1 40m4m4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CASE                | PNL.        |                                                                        |  |  |  |

JUL 18, 1985 0.0 DEGREES


ALPHAC= 5.00, BETAC=

DOUGLAS AIRCRAFT COMPANY HIGHER ORDER POTENTIAL FLOW: COMBINA, ION SOLUTIONS INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.
COMBINED OFF-BODY FLOW SOLUTION NUMBER 2 OF 2

PAGE


1.478990 1.493071 1.509274 1.523333

Conc 1 uded Figure 28.



SURFACE VELOCITY VECTORS IN LOHER FRONT 45 DEGREE VIEW INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.

MACH NO. + 0.0 ALPMA = 5.000 DEG. MET: DF1c: HD NEUMANN REV-MAC + 0.0 MIL. CL = 0.719 07/18/85



SURFACE 1508ARS IN LOHER FRONT 45 DEGREE VIEW INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.

MACH NO = 0.0 ALPHA = 5.000 DEG CPHIN = -4.68 REF : DF12 : MO NEUMANN REV MAX = 0.0 M1L CL = 0.719 CPMAX = 0.99 D7/18/85

MEAVY LINE INDICATES ISOVALUE = -2.4000 DASHED LINE INDICATES ISOVALUE = 0.0000 INCREMENTS IN ISOVALUE = 0.1000

Figure 29. (a) Sample VECPLOT output from DF12 Mode 2 for a combined ALPHA=5 degrees. (b) Sample ISOPLOT output for same case.

# ORIGINAL PAGE IS OF POOR QUALITY

```
3-D SOLUTION FORMAT
Pressures and Velocities
                                                                                                                                                                                                                 |Must have one fing.
|Must have one title.
|Multiple titles.
NFLAGS.(IFLAG(1).1-1.NFLAGS)
            (TITLE(1),1-1,20)
                                                                                                                                                                                                                  Reference quantities.
Number of sections.
Nilne info per section,
ie. geometry definition.
SREF, CREF, BREF, XREF, VREF, ZREF
           ECT | WILLIAM | 
 5
             NLINE2. M2mex. ISTYPE.ID. (DESCRP(1).1-1.ID): M2.(X(1).Y(1).Z(1).1-1.M2)
                                                                                                                                                                                                                    | Next Nilne, etc.
                                                                                                                                                                                                                    | Number of solutions, records. | Frow conditions. | Milne Velos, Pressures. | Nilne B.L. Quantities. | T.B.D. | T.B.D. | T.B.D. | T.B.D. | Milne characteristics.
 | Nilne characteristics.
| Next Nilne, etc.
                N : CI.Cm.Cdv
                                                                                                                                                                                                                      Section characteristics
|Next Section, etc.
                             CL, CD, CSF, CM, CROL, CYAW, CDV

N (Vx(1), Vy(1), Vz(1), Cp(1), 1=1, M1)
                                     CI.Cm.Cdv
N (Vx(i), Vy(i), Vz(i), Cp(i), i=1,M2)
                             2
                                      č
                                           CI, Cm, Cdv
                               CL. CD. CSF. CH. CROL. CYAW. CD.
                 CL. CDt. CSF. CM. CROL. CVAU. CDv. N. (DUM(1).1=1. N) | End of File.
```

Figure 30. P/V (Pressure/Velocity) dataset format.

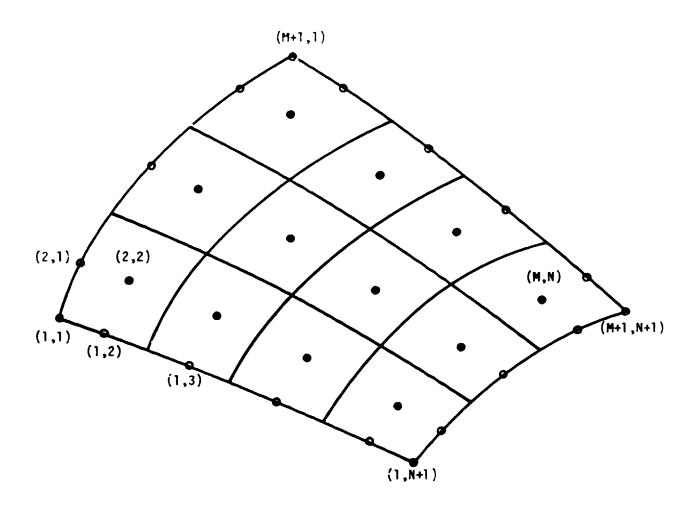



Figure 31. Extended set of velocity points stored in the P/V dataset: solid symbols are standard panel control points, hollow symbols are interpolated/extrapolated points. For MxN input panel defining points, (M-1) x (N-1) panels are produced, and (M+1) x (N+1) velocity points are calculated and saved.

## ORIGINAL PAGE IS OF POOR QUALITY

#### \*Tracoon

SEE ENTERNETIVE 3-9 SUFFACE STREAMLINE TRACENS SEE SEE FROM A '2-9 PRESOURE'-TYPE SATROET SEE

LAST UPDATE: 7/18/85 (307)

DO YOU WANT CEDECT DOLUMARY LAWER CALCULATIONS? (Y OR C/R)

OFTER THE BASSEST-HAVE OF SIG 3-3 P/V BATASET (PULLY AGALIFIES, WITHOUT GUOTEST)

1801 Look3df.pv.g487f.mode8.on

(FOLIO)

TO PERMIT SAVING OF THE STREAFLINES IN A "GUIKPLOT"-TYPE BATAGET CONFLETE THE FOLT WING BATAGET NAME, OR CAR FOR HOME! BON - TROTTOF. AIKPLOT.

TO PERMIT SAUIN OF THE STREAMLINES IN A "NEUROEN"-TYPE (CARD IRACE) DE ASET, COMPLETE THE FOLLOWING BATASET HAVE, LA CAR FOR HOME!

BEN -TSOTJOF.HELMORN.goz7?

# SUMMERY OF THESE SECTION R & M UNLIGHT

#### STREAMLINE TRACSHE CONTROL PARAMETERS:

RIMERRY "BELTO-PAREL" ALLOWED RETURNS SUCCESSIVE STREAKLING POINTS (IN "FÜRSTSING-OF-A-PAREL") 0.5000 MILES.

ALLOWALE "JUMP" DISTRICE DETWEEN SECTION EDGES MF .

191666 .

e-Minimum Print. 1-STANDARD PRINT. 8-DEIMS PRINT. PRINT -

SECTION IMPOUR ISECT -

SOLUTION NUMBER ISOLH -

0-SECTION JUMPING-TO-ITSELF INCIDITED 1-SECTION JUMPING-TO-ITSELF ALLOWED ITELF .

POLITICAL PROPERTY OF POINTS ON A STREAMLINE( .LE. 801 ) **RMPTS - 100** 

"U"-WALUE FOR START OF STREAKLINE (1 .LE. USTART .LE. R)

"W"-WILLE FOR STORY OF STREAMLINE (1 .LE. USTART .LE. H)

. 100.0000 X-CLITOFF VALUE

DITER MAY CHANGES, "LIST" OR CAR TO EXIT

(190 in-2, ustaint-8, votort-4 19017-2, ustaint-6, ustain-4

DITER MAY CHANGES, 'LIST', OR CAR TO TRACE

FRECH \* 0.0 fin \* 0.0 ALPHN \* 8.00
SECTION 1 ERROR MEASURES
STREAMLING RUNNING OFF THE ERROR OF SECTION NUMBER 1. HE CONTIGUOUS SECTION FOUND.
COMPUTATIONS TERMINATING FOR THIS STREWALDE.

DITER GAR TO PROCEED TO HERT STREAMLINE OR 1 TO EXIT (1)

Sample interactive TRACE-ON execution for a streamline on the 72-panel Figure 32. simple inlet check case.

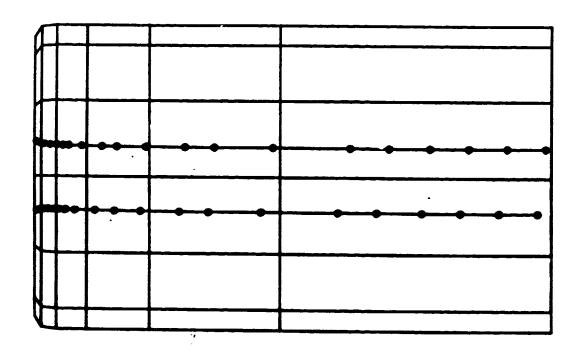
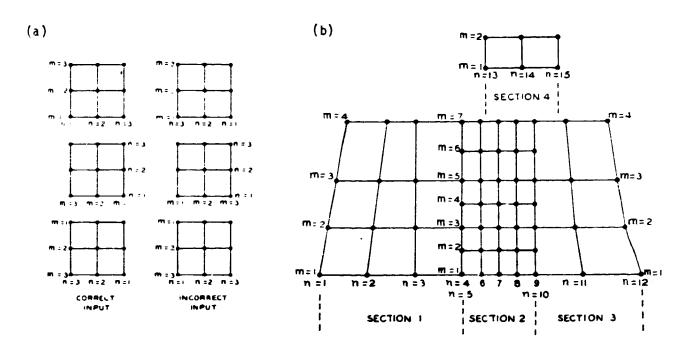




Figure 33. Two streamlines calculated by TRACE-ON for the 72-panel simple inlet check case.

# GRIGINAL PAGE IS OF POOR QUALITY



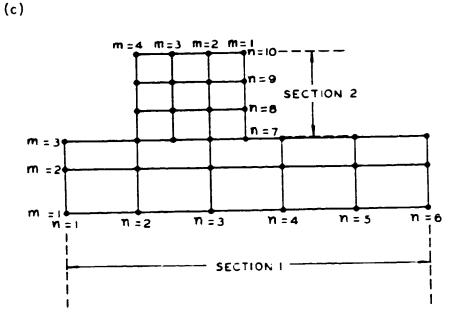



Figure 34. (a) Examples of correct and incorrect input; (b) Plan view of the input points on a body divided into sections; (c) Another possible division into sections.

#### APPENDIX A

# CONSISTENT EXPANSIONS FOR THE POTENTIAL AND VELOCITY INDUCED BY A CURVED PANEL AT A POINT IN SPACE

A "true" panel on a body surface is the curved four-sided region of the surface whose corners are input points lying exactly on the surface (Fig. 8). The boundary curves of the true panel that connect the corner points will be defined shortly. Consider a plane tangent to the surface at some central point of the true panel. A panel coordinate system is constructed whose origin is the tangency point and whose z or  $\zeta$  axis is normal to the tangent plane. The x or  $\xi$  and y or  $\eta$  axes lie in this section. The corner points of the true panel are projected into the tangent plane along the normal direction. By joining adjacent projected corner points with straight lines, a flat panel is produced, which is assumed to be the projection of the true panel in the tangent plane. This construction now defines the boundary curves of the true panel. They are the curves joining the true corner points that have straightline projections in the tangent plane.

It is a fundamental assumption of the present method that the dimensions of the panel are small in certain senses. Certainly variations over the panel of the normal direction are assumed small. Moreover, if a physical quantity is expanded in a Maclaurin series, successive terms become small, i.e., if

$$f(\xi,n) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\xi \frac{\partial}{\partial \xi} + n \frac{\partial}{\partial n}\right)_{0,0} f(\xi,n) \equiv \sum_{n=0}^{\infty} Q_n(\xi,n)$$
 (A.1)

tnen

$$|Q_n| \ll |Q_m|$$
 if  $m < n$  (A.2)

F.so, the vertical distance  $\zeta$  of a point on the true panel is of the order of the square of the horizontal distance, i.e.,

$$\zeta = 0(\xi^2 + \eta^2) \ll \sqrt{\xi^2 + \eta^2}$$
 (A.3)

The potential at a point (x,y,z) in space due to a source distribution on the true panel is

$$\Phi = \iint_{S} \frac{\sigma}{r} dS \tag{A.4}$$

where

$$r^2 = (x - \xi)^2 + (y - \eta)^2 + (z - \xi)^2$$
 (A.5)

and where S is the surface area of the true panel. It is desired to express in terms of a series of integrals over the projected flat panel. Thus it may be stated that the potential of the true panel is "expanded about" that of the flat panel. To illustrate the process more completely, a three-term expansion is derived, although only the first two terms are ultimately retained in the present method.

In panel coordinates the equation  $\zeta=f(\xi,\eta)$  of the surface of the true panel may be expanded in a Maclaurin series in the form

$$\zeta = [P\xi^2 + 2Q\xi n + Rn^2] + [T_{30}\xi^3 + T_{21}\xi^2 n + T_{12}\xi n^2 + T_{03}r^3] + \dots$$

$$= \zeta_2 + \zeta_3 + \dots$$
(A.6)

There are no constant or linear terms in (A.6) because the origin is at the tangency point. All coefficients in (A.6) are constants proportional to derivatives of  $\zeta$  at the origin. The coefficients P, Q and R, which are the only ones actually used in the present method, are the second derivatives. They are referred to below as the surface curvatures to which they are closely related. The quantity  $\zeta_2$  is second order in  $\xi$  and  $\eta$  and thus in panel dimension t, and  $\zeta_3$  is third order.

The equation of the true panel may be written

$$F(\xi, \eta, \zeta) = \zeta - \zeta_2(\xi, \eta) - \zeta_3(\zeta, \eta) - \dots = 0$$
 (A.7)

Then, taking the gradient gives

grad 
$$F = \vec{k} - (z_{2\xi} + z_{3\xi} + ...)\hat{i} - (z_{2\eta} + z_{3\eta} + ...)\hat{j}$$
 (A.8)

where subscripts  $\xi$  and  $\eta$  denote partial derivatives and  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  are the unit vectors of the panel coordinate system. The vector grad F is normal to the panel at any point. The unit normal at any point is

$$\vec{n} = \frac{\text{grad } F}{|\text{grad } F|} \tag{A.9}$$

so the  $\zeta$ -component of the unit normal is

$$n_{\zeta} = \frac{1}{|\text{grad F}|} = \frac{1}{\sqrt{1 + (\zeta_{2\xi} + \zeta_{3\xi} + ...)^2 + (\zeta_{2\eta} + \zeta_{3\eta} + ...)^2}}$$
 (A.10)

This can be expanded in the form

$$n_{\zeta} = 1 - \frac{1}{2} \left[ (\zeta_{2\xi} + \zeta_{3\xi} + \dots)^2 + (\zeta_{2\eta} + \zeta_{3\eta} + \dots)^2 \right] + \frac{3}{8} \left[ (\zeta_{2\xi} + \zeta_{3\xi} + \dots)^2 + (\zeta_{2\eta} + \zeta_{3\eta} + \dots)^2 \right]^2 + \dots$$
(A.11)

From (A.6) it is clear that  $\zeta_{2\xi}$  and  $\zeta_{2\eta}$  are first order,  $\zeta_{3\xi}$  and  $\zeta_{3\eta}$  are second order, etc., so the leading terms from the first square bracket of (A.11) are second order, and the leading terms in the second square bracket are fourth order. Thus,

$$n_{\zeta} = 1 - \frac{1}{2} (\zeta_{2\xi}^2 + \zeta_{2\eta}^2)$$
 (A.12)

is a valid three-term expansion with second (linear) term zero. More precisely.

$$n_{\zeta} = 1 - \frac{1}{2} \left[ (2P\xi + 2Qn)^{2} + (2Q\xi + 2Rn)^{2} \right]$$

$$= 1 - 2\left[ (P^{2} + Q^{2})\xi^{2} + 2(PQ + QR)\xi n + (Q^{2} + R^{2})n^{2} \right]$$

$$n_{\zeta} = 1 - 2\psi_{2}$$
(A.13)

where  $\psi_2$  is second order. The elementary surface area dS on the true panel is related to the elementary area dA = d\xidn in the tangent plane by

$$n_r dS = dA (A.14)$$

$$dS = (1 + 2\psi_2)d\xi d\eta$$
 (A.15)

The source density is strictly a function of surface distances along the panel. However, it can be shown that there is no difference between surface distances and  $\xi$  and  $\eta$  through second order. Thus it suffices to define  $\sigma$  in terms of  $\xi$  and  $\eta$  in the form

$$\sigma = \sigma_0 + (\sigma_x \xi + \sigma_y \eta) + (\sigma_{xx} \xi^2 + 2\sigma_{xy} \xi \eta + \sigma_{yy} \eta^2) + \dots$$

$$= \sigma_0 + \sigma_1 + \sigma_2$$
(A.15)

where  $\sigma_n$  is n-th order in  $\xi$  and  $\eta$  and thus in panel dimension t. The coefficients in (A.16) are constants proportional to derivatives of  $\sigma$  at the origin.

Thus, to three terms

$$\sigma dS = (\sigma_0 + \sigma_1 + \sigma_2)(1 + 2\psi_2)d\xi d\eta$$

$$= (\sigma_0 + \sigma_1 + \sigma_2')d\xi d\eta \qquad (A.17)$$

where

$$\sigma_2' = \sigma_2 + 2\psi_2\sigma_0 \tag{A.18}$$

All of the above expansions are independent of the location of the point (x,y,z).

It remains to expand 1/r, which of course, does depend on x,y,z. It is necessary to differentiate three ranges of value of r:

(a) 
$$r \gg t$$
 for all  $\xi, \eta$   
(b)  $r = 0(t)$  for all  $\xi, \eta$   
(A.19)  
 $r \ll t$  for some  $\xi, \eta$   
(c)  
 $r = 0(t)$  for other  $\xi, \eta$ 

In other words, the ranges amount to the situations where the distance of the point (x,y,z) from the origin of panel coordinates is, respectively large, of the order of, and small compared to the dimensions of the panel. It turns out that the range (b) where r is of the order of the panel dimensions is the essential one. In the far-field, range (a), 1/r is expanded in negative powers of  $r_0 = (x^2 + y^2 + z^2)^{1/2}$ . The resulting expansion differs in no important way

from the usual far-field multipole expansion and thus is relatively easy to derive. An order-of-magnitude comparison of the expansions of ranges (a) and (b) shows that while certain terms become small faster than others as the distance r increases, the expansion derived for range (b) is valid for range (a), although it is conservative in that some retained terms could be eliminated. For points close to the panel, range (c), it is necessary to assume that they lie on a line through the origin having a finite slope with respect to the tangent plane. Under this condition the order-of-magnitude analysis of range (b) remains valid. This is just what the physics of a panel method requires in any event. Eventually, the control point of the panel is identified with the origin of panel coordinates and the above condition states that if a point approaches the surface, it does so at a control point. Since it is only at the control points that the normal velocity boundary condition is applied, approaching any other surface point would give physically meaningless results. Thus the derivation below concentrates on range (b), which may be thought of as the effect of a panel on control points of nearby panels.

The distance r can be written

$$r^{2} = (x - \xi)^{2} + (y - \eta)^{2} + z^{2} - 2z\zeta + \zeta^{2}$$

$$= r_{f}^{2} - 2z\zeta + \zeta^{2}$$
(A.20)

where  $r_f$  is the distance between (x,y,z) and the point  $(\xi,\eta,0)$  on the flat panel (Fig. 3). Thus

$$\frac{1}{r} = \frac{1}{r_f} \frac{1}{\sqrt{1 + (-2z\zeta + \zeta^2)/r_f^2}} = \frac{1}{r_f} \left[ 1 - \frac{1}{2} \frac{-2z\zeta + \zeta^2}{r_f^2} + \frac{3}{8} \frac{4z^2\zeta^2}{r_f^4} + \ldots \right]$$

$$= \frac{1}{r_f} \left[ 1 + \frac{z}{r_f} \frac{\zeta}{r_f} + (\frac{3}{2} \frac{z^2}{r_f^2} - \frac{1}{2}) \frac{\zeta^2}{r_f^2} + \ldots \right] \tag{A.21}$$

Note that  $(z/r_f)$  is of order unity, and, since  $r_f$  is O(t), the quantity  $\zeta/r_f$  is also O(t), i.e.,  $O(\xi)$ . If use is made of (A.6), the above becomes

$$\frac{1}{r} = \frac{1}{r_f} \left[ 1 + \frac{z}{r_f} \frac{\zeta_2 + \zeta_3 + \dots}{r_f} + \left( \frac{3}{2} \frac{z^2}{r_f^2} - \frac{1}{2} \right) \left( \frac{\zeta_2 + \zeta_3 + \dots}{r_f} \right)^2 \right]$$
 (A.22)

from which the desired three-term expansion is obtained in the form

$$\frac{1}{r} = \frac{1}{r_f} \left\{ 1 + \frac{z}{r_f} \frac{\zeta_2}{r_f} + \left[ \frac{z}{r_f} \frac{\zeta_3}{r_f} + \left( \frac{3}{2} \frac{z^2}{r_f^2} - \frac{1}{2} \right) \frac{\zeta_2^2}{r_f^2} \right] \right\}$$
 (A.23)

or, for abbreviation,

$$\frac{1}{r} = \frac{1}{r_f} (1 + c_1 + c_2) \tag{A.24}$$

where  $c_n$  is of order n in  $\xi$  or n and thus in t. Now this is multiplied by (A.17) to obtain the expansion

$$\frac{\sigma}{r} dS = \frac{1}{r_f} (\sigma_0 + \sigma_1 + \sigma_2^i)(1 + c_1 + c_2)dA$$

$$= \frac{dA}{r_r} [\sigma_0 + \sigma_1 + \sigma_2^i]$$

$$+ c_1\sigma_0 + c_1\sigma_1 + c_1\sigma_2^i$$

$$+ c_2\sigma_0 + c_2\sigma_1 + c_2\sigma_2^i]$$
(A.25)

The square bracket in (A.25) must be reduced to a three-term expansion using the facts that

$$\sigma_0 >> \sigma_1 >> \sigma_2$$
 (A.26)

and

$$1 >> c_1 >> c_2$$
 (A.27)

The leading (lowest order) term is clearly  $\sigma_0$  because all terms are small compared to it. Possible members of the second term are  $\sigma_1$  and  $c_1\sigma_0$  because all remaining terms are small compared to one or the other. Thus, both of these are retained in the second term, because neither can be guaranteed to be small compared to the other in all cases. The question then arises as to which of the remaining six terms of the square bracket of (A.24) need to be retained in

the third term of the expansion. Obviously, if any of these six is small compared to any other, it may be discarded. This eliminates all but  $\sigma_2$ ,  $c_1\sigma_1$  and  $c_2\sigma_0$ . Thus, the three-term expansion of the integrand of (A.4) has the form

$$\frac{\sigma}{r} dS = \frac{dA}{r_f} \left[ \sigma_0 + (c_1 \sigma_0 + \sigma_1) + (c_2 \sigma_0 + c_1 \sigma_1 + \sigma_2^1) \right]$$
 (A.28)

when the abbreviations of (A.16) and (A.24) are replaced by their actual expressions, the three-term expansion of (A.4) is

where the integrals are over the projected flat panel. Defining the integrals,

$$I_{mnp} = \iint_{A} \frac{\xi^{m} \eta^{n}}{r_{f}^{p}} dA \qquad (A.30)$$

the three-term expansion of the potential can be written

$$\phi = \phi^{(0)}\sigma_{0} + [\phi^{(c)}\sigma_{0} + \phi^{(1x)}\sigma_{x} + \phi^{(1y)}\sigma_{y}] 
+ [\phi^{(20)}\sigma_{0} + \phi^{(2x)}\sigma_{x} + \phi^{(2y)}\sigma_{y} + \phi^{(2xx)}\sigma_{xx}^{i} + 2\phi^{(2xy)}\sigma_{xy}^{i} + \phi^{(2yy)}\sigma_{yy}^{i}]$$
(A.31)

where

$$\sigma'_{xx} = \sigma_{xx} + 2(P^2 + Q^2)$$

$$\sigma'_{xy} = \sigma_{xy} + 2(PQ + QR)$$

$$\sigma'_{yy} = \sigma_{yy} + 2(Q^2 + R^2)$$
(A.32)

22**74**H

The individual potentials in (A.30) are

$$\phi^{(0)} = I_{001} \tag{A.33}$$

$$\phi^{(c)} = z[PI_{203} + 2QI_{113} + RI_{023}]$$
 (A.34)

$$\phi^{(1<)} = I_{101}$$

$$\phi^{(1y)} = I_{011}$$
(A.35)

$$\phi^{(20)} = z[T_{30}I_{303} + T_{21}I_{123} + T_{12}T_{123} + T_{03}I_{033}]$$

$$+ \frac{3}{2}z^{2}[P_{2}I_{405} + 4PQI_{315} + (2PR + 4Q^{2})I_{225} + 4QRI_{135} + R^{2}I_{045}]$$

$$- \frac{1}{2}[P^{2}I_{403} + 4PQI_{313} + (2PR + 4Q^{2})I_{223} + 4QRI_{133} + R^{2}I_{043}]$$
(A.36)

$$\phi^{(2x)} = z[PI_{303} + 2QI_{213} + RI_{123}]$$

$$\phi^{(2x)} = z[PI_{213} + 2QI_{123} + RI_{033}]$$
(A.37)

$$\phi^{(2xx)} = I_{201}$$

$$\phi^{(2xy)} = I_{111}$$

$$\phi^{(2yy)} = I_{021}$$
(A.38)

The first term of (A.31),  $\phi^{(0)}\sigma_0$ , corresponds to a flat panel with a constant source density. This is, of course, the term used in the first-order method. The second term of (A.31) contains the second derivatives P, Q and R, of the surface shape but no higher derivatives and first derivatives of the source density but no higher derivatives. Thus the second term of (A.31) corresponds to a paraboloidal panel shape with a linearly varying source density. The third term of (A.31) contains all the preceding quantities and also the third

derivatives of the surface shape and the second derivatives of the source density: a cubic panel with a quadratic source density.

والمعاوم والماليا سيمه

The equations above illustrate the fact that succeeding terms in the expansion for the potential of a panel increase rapidly in complexity. A single first term is followed by a second term containing five individual parts, each with its own integral of the form, Eq. (A.30). The third term contains 23 individual parts which together involve 17 different integrals of the form of Eq. (A.30). The great increase in complexity associated with retaining the third term of (A.31) appears to be unjustified at this time. Accordingly, the higher-order method accounts for the source density effect by considering the first two terms in Eq. (A.31). This is the approach that has previously been followed in the two-dimensional and axisymmetric higher-order methods (Refs. 17 and 18).

#### APPENDIX B

#### GENERATION OF PANEL GEOMETRIC QUANTITIES BY MEANS OF BICUBIC SPLINES

Very elaborate geometry fitting procedures based on parametric bicubic splines have been developed at Douglas Aircraft Company over many years. A description of this technique is beyond the scope of the present report. A survey is contained in Ref. 19. In the present application the method is considered a "black box," although several minor changes had to be made.

The points defining the body are input in the usual way. Each panel is fitted by a bicubic surface in terms of two parameters, u and v, that vary from 0 to 1 over the panel. (The panel is the unit square in parameter space.) This permits the well-known procedures of Ref. 20 to be used as follows.

Let a point, (x,y,z), of the panel be represented as a vector

$$\dot{x} = \dot{x}i + \dot{y}j + \dot{z}k$$
 (B.1)

The parametric cubic fit then yields

$$\dot{x} = \dot{x}(u,v) \tag{B.2}$$

These expressions may be differentiated analytically to give

$$\vec{x}_{u}, \quad \vec{x}_{v}, \quad \vec{x}_{uu}, \quad \vec{x}_{uv}, \quad \vec{x}_{vv}$$
 (B.3)

as functions of u and v. The vectors  $\vec{x}_u$  and  $\vec{x}_v$  are tangent to the curves,  $\vec{v}_u$  = constant and  $\vec{u}_u$  = constant, respectively, and thus lie in the surface although they are not perpendicular.

The point corresponding to u = v = 1/2 is in the "center" of the panel in some sense. It is selected as the control point and origin of coordinates of the flat projected panel. The derivatives of Eq. (B.3) are evaluated there, and in all that follows  $\vec{x}$  and its derivatives are assumed to be those at u = v = 1/2.

The unit normal vector to the panel, which is also the unit vector along the  $\boldsymbol{\zeta}$  axis of panel coordinates is

$$\vec{n} = \vec{k}_e = \pm \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_u \times \vec{x}_v|}$$
 (B.4)

where the sign is selected to give an outward normal. The unit vector along the  $\xi$  axis of panel coordinates is taken tangent to the v = constant curve which nearly parallels the N-lines,

$$\dot{i}_e = \frac{\dot{x}_u}{|\dot{x}_u|}$$
 (B.5)

Thus the unit vector along the n axis of panel coordinates is

$$\mathbf{j}_{e} = \mathbf{k}_{e} \times \mathbf{k}_{e} \tag{B.6}$$

The components of the three unit vectors thus obtained comprise the transformation matrix.

Now define

$$h = u - 1/2,$$
  $k = v - 1/2$  (B.7)

and consider the Maclaurin series for  $\xi$ ,  $\eta$  and  $\zeta$  in terms of h and k. They have the form

$$\xi = Ah + Bk + (second order)$$

$$\eta = Ch + Dk + (second order)$$

$$\zeta = 1/2(eh^2 + 2fhk + gk^2) + (third order)$$
(B.8)

There are not constant terms in (B.8), because the origin of panel coordinates corresponds to h=k=0. Furthermore, since the  $\xi\eta$  plane is tangent to the surface at the origin ( $\vec{k}_e$  is the normal vector), the series for  $\zeta$  has no linear terms. Reference 20 gives the coefficients of Eqs. (B.8) as

$$A = \dot{x}_{u} \cdot \dot{i}_{e}$$

$$B = \dot{x}_{v} \cdot \dot{i}_{e}$$
(B.9)

$$C = \overrightarrow{x}_{u} \cdot \overrightarrow{j}_{e} = 0$$

$$D = \overrightarrow{x}_{v} \cdot \overrightarrow{j}_{e}$$

$$e = \overrightarrow{x}_{uu} \cdot \overrightarrow{n} \qquad f = \overrightarrow{x}_{uv} \cdot \overrightarrow{n} \qquad g = \overrightarrow{x}_{vv} \cdot \overrightarrow{n} \qquad (B.10)$$

The first two of Eqs. (B.8) may be inverted to give

$$h = a\xi + h\eta + (second order)$$

$$k = c\xi + d\eta + (second order)$$
(B.11)

where

$$a = \frac{D}{\Delta}$$
,  $b = -\frac{B}{\Delta}$ ,  $c = \frac{C}{\Delta}$ ,  $d = \frac{A}{\Delta}$ 

$$A = AD - BC$$
(B.12)

Equation (B.12) may be inserted into the third equation of (B.8) to give the desired form

$$z = P \epsilon^2 + 20 \xi \eta + R \eta^2$$
 (B.13)

The result is

$$P = 1/2[ea^{2} + 2fac + gc^{2}]$$

$$Q = 1/2[eab + f(ad + bc) + gcd]$$

$$R = 1/2[eb + 2fbd + gd^{2}]$$
(B.14)

For generality c has been included in Eq. (B.14), but in the present application it is zero, which simplifies (B.14).

It remains to compute corner points in panel coordinates. The four input points bounding the panel are transformed into panel coordinates to obtain  $(\xi_k^*, \eta_k^*, \zeta_k^*)$ , k = 1, 2, 3, 4. They are projected into the plane by simply ignoring  $\zeta_k^*$ . Next the side between points 1 and 2 is rotated to make  $\eta_1 = \eta_2$ . The midpoint and length of the side are, respectively,

$$\bar{\xi} = \frac{1}{2} (\xi_1^* + \xi_2^*), \qquad \bar{\eta} = \frac{1}{2} (\eta_1^* + \eta_2^*)$$

$$d = \sqrt{(\xi_1^* - \xi_2^*)^2 + (\eta_1^* - \eta_2^*)^2}$$
(B.15)

Then the final corner point coordinates are

$$\eta_1 = \eta_2 = \overline{\eta}$$

$$\xi_1 = \overline{\xi} - \frac{d}{2}$$

$$\xi_2 = \overline{\xi} + \frac{d}{2}$$
(B.16)

A similar calculation is performed for the side between the points 3 and 4.

It should be noted that the underlying parametric cubic geometry routine uses the surrounding input points to generate the fit to a panel. The routine considers only points on the same section, and thus slightly different results can be obtained depending on how the body is sectioned. For fitting purposes, the wake is considered a separate section, so that the routine does not try to fit around the trailing edge. On the semi-infinite last-wake panel the derivatives P and Q are set equal to zero, so that the panel has straight generators in the stream direction, but R, the spanwise second derivative, may be nonzero.

### APPENDIX C AREA MOMENTS OF A PANEL

The normalized moments of the area of the tangent panel are required. These are defined by

$$I_{nm} = \frac{1}{t^{n+m+2}} \iint_{A} \xi^{n} n^{m} d\xi d\eta \qquad (C.1)$$

where the region of integration is the area of the panel. For example,  $t^2I_{00}$  is the area  $t^4I_{20}$ ,  $t^4I_{11}$ ,  $t^4I_{02}$  are the moments of inertia or second moments. The order of a moment is the sum of its subscripts n + m. There are two first-order moments, three second-order, four third-order, and five fourth-order. The present method uses up through fourth order. The moments are calculated by a straightforward but rather lengthy set of formulas.

First, normalize the corner point coordinates by the maximum diagonal,

$$\dot{\xi}_{k} = \xi_{k}/t, \quad \dot{\eta}_{k} = \xi_{k}/t, \quad k = 1, 2, 3, 4$$
 (C.2)

Now the normalized moment may be defined in terms of certain auxiliary functions

$$I_{nm} = -I_{nm}^{(32)} + I_{nm}^{(41)} + \frac{1}{(m+1)(n+1)} \begin{bmatrix} {}_{n}^{n+1} & ({}_{2}^{n+1} - {}_{3}^{n+1}) \\ {}_{n}^{+} & {}_{3}^{+} & ({}_{4}^{n+1} - {}_{3}^{n+1}) \end{bmatrix}$$

$$+ {}_{n}^{n+1} & ({}_{4}^{n+1} - {}_{3}^{n+1} - {}_{3}^{n+1}) \end{bmatrix}$$
(C.3)

The auxiliary function  $I_{nm}^{(32)}$  is as follows:

If |m32| > 1:

$$I_{nm}^{(32)} = \frac{1}{(m+1)(n+1)} \left[ \xi^{n+1} \eta^{n+1} \right]_{3}^{2}$$

$$- \frac{1}{(n+1)(n+2)} \frac{1}{m_{32}} \left[ \xi^{n+2} \eta^{n} \right]_{3}^{2}$$

$$+ \frac{m}{(n+1)(n+2)(n+3)} \frac{1}{m_{32}^{2}} \left[ \xi^{n+3} \eta^{n-1} \right]_{3}^{2}$$
(C.4)

$$-\frac{n(m-1)}{(n+1)(n+2)(n+3)(n+4)} \frac{1}{m_{32}^3} \left[\xi^{n+4}\eta^{n-2}\right]_3^2$$

$$+\frac{m(m-1)(m-2)}{(n+1)(n+2)(n+3)(n+4)(n+5)} \frac{1}{m_{32}^4} \left[\xi^{n+5}\eta^{n-3}\right]_3^2$$

$$-\frac{m(m-1)(m-2)(m-3)}{(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)} \frac{1}{n_{32}^5} \left[\xi^{n+6}\eta^{n-4}\right]_3^2$$

If  $|m_{32}| \le 1$ :

$$I_{nm}^{(32)} = \frac{1}{(m+1)(m+2)} m_{32} \left[ \frac{\xi^{n} \eta^{m+2}}{\eta^{m+2}} \right]_{3}^{2}$$

$$- \frac{n}{(m+1)(m+2)(m+3)} m_{32}^{2} \left[ \frac{\xi^{n-1} \eta^{m+3}}{\eta^{m+3}} \right]_{3}^{2}$$

$$+ \frac{n(n-1)}{(m+1)(m+2)(m+3)(m+4)} m_{32}^{3} \left[ \frac{\xi^{n-2} \eta^{m+4}}{\eta^{m+4}} \right]_{3}^{2}$$

$$- \frac{n(n-1)(n-2)}{(m+1)(m+2)(m+3)(m+4)(m+5)} m_{32}^{4} \left[ \frac{\xi^{n-3} \eta^{m+5}}{\eta^{n+5}} \right]_{3}^{2}$$

$$+ \frac{n(n-1)(n-2)(n-3)}{(m+1)(m+2)(m+3)(m+4)(m+5)(m+6)} m_{32}^{5} \left[ \frac{\xi^{n-4} \eta^{n+6}}{\eta^{n+6}} \right]_{3}^{2}$$

where the bracketed symbols are defined by

$$[\xi^{\mathbf{k}} \cdot \mathbf{p}]_{3}^{2} = \xi_{2}^{\mathbf{k}} \cdot \mathbf{p} - \xi_{3}^{\mathbf{k}} \cdot \mathbf{p}$$
 (C.6)

(The superscripts in the above equations denote simple powers of the quantities except for the bracketed double superscript (32), which denotes the side of the quadrilateral.) It is clear from the above that the calculation of  $I_{nm}^{(32)}$  requires m + 2 terms of Eq. (C.4) or n + 1 terms of Eq. (C.5). The calculation is simply terminated at this number of terms. The auxiliary function  $I_{nm}^{(41)}$  is obtained from the above by an obvious substitution of subscripts.

### APPENDIX D NEAR-FIELD SOURCE FORMULAS

If  $r_0/t < \rho_2$ , the near field formulas are used to compute induced velocities. The calculation starts with the element coordinates x, y, z of the field point and the geometric quantities associated with the element that are discussed in Section 2.3.

Preliminary quantities to be calculated are:

$$r_{k} = \sqrt{(x - \xi_{k})^{2} + (y - \eta_{k})^{2} + z^{2}},$$

$$\alpha_{k} = \frac{x - \xi_{k}}{r_{k}}, \qquad \beta_{k} = \frac{y - \eta_{k}}{r_{k}}, \qquad \gamma_{k} = \frac{z}{r_{k}}$$

$$p_{k}^{(32)} = m_{32}[z^{2} + (y - \eta_{k})^{2}] - (x - \xi_{k})(y - \eta_{k}), \qquad k = 3 \text{ or } 2$$
(D.2)

The basic functions are

$$L^{(mn)} = \log \frac{r_m + r_n - d_{mn}}{r_m + r_n + d_{mn}} \quad \text{m,n consecutive, i.e., mn} = 12, 32, 34 \text{ or } 41$$
(D.3)

and

$$T_k^{(32)} = \tan^{-1} \left[ \frac{p_k^{(32)}}{2r_k} \right], \qquad k = 3 \text{ or } 2$$

$$T_k^{(41)} = \tan^{-1} \left[ \frac{p_k^{(41)}}{2r_k} \right], \qquad k = 4 \text{ or } 1$$

k = 4 or 1

Also needed are derivatives of the T's and L's. The derivatives of  $T_{k}^{\left(32\right)}$  are

$$\frac{\partial T_{k}^{(32)}}{\partial x} = -\frac{z(r_{k}^{2}\beta_{k} + p_{k}^{(32)}\alpha_{k})}{p_{k}^{(32)}}$$

 $p_{L}^{(41)} = m_{A1}[z^{2} + (y - n_{k})^{2}] - (x - \xi_{k})(y - n_{k}),$ 

$$\frac{\partial T_{k}^{(32)}}{\partial y} = \frac{z[(2m_{32}\beta_{k} - \alpha_{k})r_{k}^{2} - p_{k}^{(32)}\beta_{k}]}{p_{k}^{(32)}}$$

$$\frac{\partial T_{k}^{(32)}}{\partial z} = \frac{2m_{32}z^{2}r_{k} - p_{k}^{(32)}(r_{k} + z\gamma_{k})}{p_{k}^{(32)}}$$

$$p_{k}^{(32)} = z^{2}r_{k}^{2} + [p_{k}^{(32)}]^{2}$$
(D.5)

There is an analogous set of formulas for the derivatives of  $T_k^{(41)}$ .

The derivatives of  $L^{(mn)}$  are

$$\frac{\partial L(mn)}{\partial x} = D_{mn}(\alpha_{m} + \alpha_{n}), \qquad \frac{\partial L(mn)}{\partial y} = D_{mn}(\beta_{m} + \beta_{n}), \qquad \frac{\partial L(mn)}{\partial z} = D_{mn}(\gamma_{m} + \gamma_{n}),$$

$$D_{mn} = \frac{2d_{mn}}{(r_{m} + r_{n})^{2} - d_{mn}^{2}}$$

$$mn = 12, 32, 34, 41$$
(D.6)

The flat-panel constant-source velocities are

$$V_{x}^{(0)} = -\frac{1}{S_{32}} L^{(32)} + \frac{1}{S_{41}} L^{(41)}$$

$$V_{y}^{(0)} = -L^{(12)} + L^{(34)} + \frac{m_{32}}{S_{32}} L^{(32)} - \frac{m_{41}}{S_{41}} L^{(41)}$$

$$V_{z}^{(0)} = -T_{2}^{(32)} + T_{3}^{(32)} + T_{1}^{(41)} - T_{4}^{(41)}$$
(D.7)

Referring again to Appendix A, it can be seen that the integrals  $I_{mnp}$  of Eq. (A.30) are source potentials if p=1 and, when multiplied by z, are dipole potentials if p=3. Specifically if  $\phi_{mn}$  represents the potential of a dipole distribution  $\mu=\xi^m\eta^n$  on the panel, then

$$\phi_{mn} = zI_{mn3} \tag{D.8}$$

It turns out that the higher-order source terms for a panel are expressible in terms of derivatives of the dipole potentials, Eq. (D.8), and the derivatives of the source velocities, Eq. (D.7).

Only the derivatives of  $V_x$  and  $V_y$  are needed (since  $V_z = \phi_{00}$ , its derivatives are exactly a potential derivative). The derivatives of  $V_x$  and  $V_y$  are

$$\frac{\partial V_{x}^{(0)}}{\partial x} = -\frac{1}{S_{32}} \frac{\partial L^{(32)}}{\partial x} + \frac{1}{S_{41}} \frac{\partial L^{(41)}}{\partial x}$$

$$\frac{\partial V_{x}^{(0)}}{\partial y} = -\frac{1}{S_{32}} \frac{\partial L^{(32)}}{\partial y} + \frac{1}{S_{41}} \frac{\partial L^{(41)}}{\partial y}$$

$$\frac{\partial V_{x}^{(0)}}{\partial z} = -\frac{1}{S_{32}} \frac{\partial L^{(32)}}{\partial z} + \frac{1}{S_{41}} \frac{\partial L^{(41)}}{\partial z}$$

$$\frac{\partial V_{y}^{(0)}}{\partial x} = -\frac{\partial L^{(12)}}{\partial x} + \frac{\partial L^{(34)}}{\partial x} + \frac{m_{32}}{S_{32}} \frac{\partial L^{(32)}}{\partial x} - \frac{m_{41}}{S_{41}} \frac{\partial L^{(41)}}{\partial x}$$

$$\frac{\partial V_{y}^{(0)}}{\partial y} = -\frac{\partial L^{(12)}}{\partial y} + \frac{\partial L^{(34)}}{\partial y} + \frac{m_{32}}{S_{32}} \frac{\partial L^{(32)}}{\partial y} - \frac{m_{41}}{S_{41}} \frac{\partial L^{(41)}}{\partial y}$$

$$\frac{\partial V_{y}^{(0)}}{\partial z} = -\frac{\partial L^{(12)}}{\partial z} + \frac{\partial L^{(34)}}{\partial z} + \frac{m_{32}}{S_{32}} \frac{\partial L^{(32)}}{\partial z} - \frac{m_{41}}{S_{41}} \frac{\partial L^{(41)}}{\partial z}$$

Now the potential derivatives are as follows.

$$\frac{\partial \phi_{00}}{\partial x} = -\frac{\partial T_{2}^{(32)}}{\partial x} + \frac{\partial T_{3}^{(32)}}{\partial x} + \frac{\partial T_{1}^{(41)}}{\partial x} - \frac{\partial T_{4}^{(41)}}{\partial x} - \frac{\partial \sigma_{00}}{\partial x} = -\frac{\partial \sigma_{00}^{(32)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} - \frac{\partial \sigma_{00}^{(41)}}{\partial x} - \frac{\partial \sigma_{00}^{(41)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} - \frac{\partial \sigma_{00}^{(41)}}{\partial x} - \frac{\partial \sigma_{00}^{(41)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} + \frac{\partial \sigma_{00}^{(32)}}{\partial x} - \frac{\partial \sigma_{00}^{(41)}}{\partial x} - \frac{\partial \sigma$$

$$\frac{\partial \phi_{01}}{\partial x} = -z \frac{\partial V_{y}^{(0)}}{\partial x} + y \frac{\partial \phi_{00}}{\partial x}$$

$$\frac{\partial \phi_{01}}{\partial y} = -z \frac{\partial V_{y}^{(0)}}{\partial y} + y \frac{\partial \phi_{00}}{\partial y} + V_{z}(\text{source})$$

$$\frac{\partial \phi_{01}}{\partial z} = -z \frac{\partial V_{y}^{(0)}}{\partial z} + y \frac{\partial \phi_{00}}{\partial z} - V_{y}(\text{source})$$

$$\frac{\partial \phi_{10}}{\partial x} = -z \frac{\partial V_{x}^{(0)}}{\partial x} + x \frac{\partial \phi_{00}}{\partial x} + V_{z}(\text{source})$$

$$\frac{\partial \phi_{10}}{\partial y} = -z \frac{\partial V_{x}^{(0)}}{\partial y} + x \frac{\partial \phi_{00}}{\partial y}$$
(D.12)

Now define

$$J_{11} = \frac{r_3 - r_2}{s_{32}^2} + \frac{r_1 - r_4}{s_{41}^2} + \frac{m_{32}}{s_{32}^3} (x - m_{32}y - b_{32})L^{(32)}$$
$$-\frac{m_{41}}{s_{41}^3} (x - m_{41}y - b_{41})L^{(41)}$$
(D.13)

$$\frac{\partial J_{11}}{\partial x} = \frac{\alpha_3 - \alpha_2}{S_{32}^2} + \frac{m_{32}}{S_{32}^3} L^{(32)} + \frac{m_{32}}{S_{32}^3} (x - m_{32}y - b_{32}) \frac{\partial L^{(32)}}{\partial x} + \frac{\alpha_1 - \alpha_4}{S_{41}^2} - \frac{m_{41}}{S_{41}^3} L^{(41)} - \frac{m_{41}}{S_{41}^3} (x - m_{41}y - b_{41}) \frac{\partial L^{(41)}}{\partial x}$$

 $\frac{\partial \phi_{10}}{\partial z} = -z \frac{\partial V_{X}^{(0)}}{\partial z} + x \frac{\partial \phi_{00}}{\partial z} - V_{X}(source)$ 

$$\frac{\partial J_{11}}{\partial y} = \frac{\beta_3 - \beta_2}{S_{32}^2} - \frac{m_{32}^2}{S_{32}^2} L^{(32)} + \frac{m_{32}}{S_{32}^3} (x - m_{32}y - b_{32}) \frac{\partial L^{(32)}}{\partial y} + \frac{\beta_1 - \beta_4}{S_{41}^2} + \frac{m_{41}^2}{S_{41}^3} L^{(41)} - \frac{m_{41}}{S_{41}^3} (x - m_{41}y - b_{41}) \frac{\partial L^{(41)}}{\partial y}$$
(D.14)

$$\frac{\partial J_{11}}{\partial z} = \frac{\gamma_3 - \gamma_2}{S_{32}^2} + \frac{m_{32}}{S_{32}^3} (x - m_{32}y - b_{32}) \frac{\partial L^{(32)}}{\partial z} + \frac{\gamma_1 - \gamma_4}{S_{41}^2} - \frac{m_{41}}{S_{41}^3} (x - m_{41}y - b_{41}) \frac{\partial L^{(41)}}{\partial z}$$

Using the above

$$V_{x}^{(Q)} = -\left[z \frac{\partial J_{11}}{\partial x} + x \frac{\partial \phi_{01}}{\partial x} + y \frac{\partial \phi_{10}}{\partial x} - xy \frac{\partial \phi_{00}}{\partial x} - zv_{y}^{(0)}\right]$$

$$V_{y}^{(Q)} = -\left[z \frac{\partial J_{11}}{\partial y} + x \frac{\partial \phi_{01}}{\partial y} + y \frac{\partial \phi_{10}}{\partial y} - xy \frac{\partial \phi_{00}}{\partial y} - zv_{x}^{(0)}\right]$$

$$V_{z}^{(Q)} = -\left[z \frac{\partial J_{11}}{\partial z} + x \frac{\partial \phi_{01}}{\partial z} + y \frac{\partial \phi_{10}}{\partial z} - xy \frac{\partial \phi_{00}}{\partial z} + J_{11}\right]$$
(D.15)

Also define

$$H_{02} = m_{32} \frac{r_2 - r_3}{S_{32}^2} + m_{41} \frac{r_4 - r_1}{S_{41}^2} + \frac{1}{S_{32}^2} (x - m_{32}y - b_{32})L^{(32)}$$

$$- \frac{1}{S_{41}^3} (x - m_{41}y - b_{41})L^{(41)} \qquad (D.16)$$

$$\frac{\partial H_{02}}{\partial x} = \frac{m_{32}}{S_{32}^2} (\alpha_2 - \alpha_3) + \frac{1}{S_{32}^3} L^{(32)} + \frac{(x - m_{32}y - b_{32})}{S_{32}^3} \frac{\partial L^{(32)}}{\partial x}$$

$$+ \frac{m_{41}}{S_{41}^2} (\alpha_4 - \alpha_1) - \frac{1}{S_{41}^3} L^{(41)} - \frac{(x - m_{41}y - b_{41})}{S_{41}^3} \frac{\partial L^{(41)}}{\partial x}$$

$$\frac{\partial H_{02}}{\partial y} = \frac{m_{32}}{S_{32}^2} (\beta_2 - \beta_3) - \frac{m_{32}}{S_{32}^3} L^{(32)} + \frac{(x - m_{32}y - b_{32})}{S_{32}^3} \frac{\partial L^{(32)}}{\partial y}$$

(D.17)

 $+\frac{m_{41}}{s_{41}^2}(\beta_4-\beta_1)+\frac{m_{41}}{s_{41}^3}L^{(41)}+\frac{(x-m_{41}y-b_{41})}{s_{41}^3}\frac{\partial L^{(41)}}{\partial y}$ 

$$\frac{\partial H_{02}}{\partial z} = \frac{m_{32}}{S_{32}^2} (\gamma_2 - \gamma_3) + \frac{(x - m_{32}y - b_{32})}{S_{32}^3} \frac{\partial L^{(32)}}{\partial z} + \frac{m_{41}}{S_{41}^2} (\gamma_4 - \gamma_1) - \frac{(x - m_{41}y - b_{41})}{S_{41}^3} \frac{\partial L^{(41)}}{\partial z}$$

Using the above

$$V_{x}^{(R)} = -\left[z \frac{\partial^{H}_{02}}{\partial x} + 2y \frac{\partial^{\phi}_{01}}{\partial x} - (y^{2} + z^{2}) \frac{\partial^{\phi}_{00}}{\partial x}\right]$$

$$V_{y}^{(R)} = -\left[z \frac{\partial^{H}_{02}}{\partial y} + 2y \frac{\partial^{\phi}_{01}}{\partial y} - (y^{2} + z^{2}) \frac{\partial^{\phi}_{00}}{\partial y} - 2zV_{y}^{(0)}\right]$$

$$V_{z}^{(R)} = -\left[z \frac{\partial^{H}_{02}}{\partial z} + 2y \frac{\partial^{\phi}_{01}}{\partial z} - (y^{2} + z^{2}) \frac{\partial^{\phi}_{00}}{\partial z} - 2zV_{z}^{(0)}\right]$$
(D.18)

Finally, define

$$J_{02} = H_{02} - zV_z^{(0)}$$

$$J_{20} = \phi^{(0)} - H_{02}$$
(D.19)

$$\frac{\partial J_{20}}{\partial x} = -V_{x}^{(0)} - \frac{\partial H_{02}}{\partial x}, \qquad \frac{\partial J_{20}}{\partial y} = -V_{y}^{(0)} - \frac{\partial H_{02}}{\partial y}$$

$$\frac{\partial J_{20}}{\partial z} = -V_{z}^{(0)} - \frac{\partial H_{02}}{\partial z}, \qquad (D.20)$$

where

$$\phi^{(0)} = (y - \eta_1)L^{(12)} + \frac{(x - \xi_2) - m_{32}(y - \eta_2)}{S_{32}}L^{(32)}$$

$$- (y - \eta_3)L^{(34)} - \frac{(x - \xi_4) - m_{41}(y - \eta_4)}{S_{41}}L^{(41)} - zV_z^{(0)}$$

Using the above

$$v_{x}^{(p)} = -\left[z \frac{\partial J_{20}}{\partial x} + 2x \frac{\partial \Phi_{10}}{\partial x} - x^{2} \frac{\partial \Phi_{00}}{\partial x} - 2zv_{x}^{(0)}\right]$$

D-6

$$V_{y}^{(P)} = -\left[z \frac{\partial J_{20}}{\partial y} + 2x \frac{\partial \phi_{10}}{\partial y} - x^{2} \frac{\partial \phi_{00}}{\partial y}\right]$$

$$V_{z}^{(P)} = -\left[z \frac{\partial J_{20}}{\partial z} + 2x \frac{\partial \phi_{10}}{\partial z} - x^{2} \frac{\partial \phi_{00}}{\partial z} + J_{20}\right]$$

$$V_{x}^{(1x)} = xV_{x}^{(0)} - J_{20}$$

$$V_{y}^{(1x)} = xV_{y}^{(0)} - J_{11}$$

$$V_{z}^{(1x)} = xV_{z}^{(0)} - zV_{x}^{(0)}$$

$$V_{x}^{(1y)} = yV_{x}^{(0)} - J_{11}$$

$$V_{y}^{(1y)} = yV_{y}^{(0)} - J_{02}$$

$$V_{z}^{(1y)} = yV_{z}^{(0)} - zV_{y}^{(0)}$$

$$V_{z}^{(1y)} = yV_{z}^{(0)} - zV_{y}^{(0)}$$

$$V_{z}^{(1y)} = yV_{z}^{(0)} - zV_{y}^{(0)}$$

## APPENDIX E INTERMEDIATE-FIELD SOURCE FORMULAS

If

$$\rho_1 > r_0/t > \rho_2$$
 (E.1)

the intermediate-field formulas are used.

First define direction cosines

$$\alpha = \frac{x}{r_0}, \qquad \beta = \frac{y}{r_0}, \qquad \gamma = \frac{z}{r_0}$$
 (E.2)

Next define certain "derivative functions" as follows:

First Order:

$$u_x = -\alpha$$
,  $u_y = -\beta$ ,  $u_z = -\gamma$  (E.3)

Second Order:

$$u_{xx} = 3\alpha^2 - 1,$$
  $u_{xy} = 3\alpha\beta,$   $u_{yy} = 3\beta^2 - 1$  (E.4)  $u_{xz} = 3\alpha\gamma,$   $u_{yz} = 3\beta\gamma,$   $u_{zz} = 3\gamma^2 - 1$ 

Third Order:

$$u_{xxx} = 3\alpha(3 - 5\alpha^2),$$
  $u_{xxy} = 3\beta(1 - 5\alpha^2),$   $u_{xxz} = 3\gamma(1 - 5\alpha^2)$   
 $u_{xyy} = 3\alpha(1 - 5\beta^2),$   $u_{xyz} = -15\alpha\beta\gamma,$   $u_{xzz} = 3\alpha(1 - 5\gamma^2)$   
 $u_{yyy} = 3\beta(3 - 5\beta^2),$   $u_{yyz} = 2\gamma(1 - 5\beta^2),$   $u_{yzz} = 3\beta(1 - 5\gamma^2)$ 

Fourth Order:

$$u_{xxxx} = 9 - 90\alpha^2 + 105\alpha^4$$
 $u_{xxxy} = 15\alpha\beta(7\alpha^2 - 3)$ 

$$u_{xxxz} = 15\alpha\gamma(7\alpha^{2} - 3)$$

$$u_{xxyy} = 3 - 15(\alpha^{2} + \beta^{2}) + 105\alpha^{2}\beta^{2}$$

$$u_{xxyz} = 15\beta\gamma(7\alpha^{2} - 1)$$

$$u_{xxzz} = 3 - 15(\alpha^{2} + \gamma^{2}) + 105\alpha^{2}\gamma^{2}$$

$$u_{xyyy} = 15\alpha\beta(7\beta^{2} - 3)$$

$$u_{xyyz} = 15\alpha\gamma(7\beta^{2} - 1)$$

$$u_{xyzz} = 15\alpha\beta(7\gamma^{2} - 1)$$

$$u_{yyyz} = 9 - 90\beta^{2} + 105\beta^{4}$$

$$u_{yyyz} = 15\beta\gamma(7\beta^{2} - 3)$$

$$u_{yyzz} = 3 - 15(\beta^{2} + \gamma^{2}) + 105\beta^{2}\gamma^{2}$$

The source velocity components are:

$$V_{x}^{(0)} = \frac{t^{2}}{r_{0}^{2}} \left\{ -I_{00}u_{x} + (\frac{t}{r_{0}})[I_{10}u_{xx} - \frac{1}{2}I_{01}u_{xy}] - \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{20}u_{xxx} + 2I_{11}u_{xxy} + I_{02}u_{xyy}] \right\}$$

$$V_{y}^{(0)} = \frac{t^{2}}{r_{0}^{2}} \left\{ -I_{00}u_{y} + (\frac{t}{r_{0}})[I_{10}u_{xy} + I_{01}u_{yy}] - \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{20}u_{xxy} + 2I_{11}u_{xyy} + I_{02}u_{yyy}] \right\}$$

$$V_{z}^{(0)} = \frac{t^{2}}{r_{0}^{2}} \left\{ -I_{00}u_{z} + (\frac{t}{r_{0}})[I_{10}u_{xz} + I_{01}u_{yz}] - \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{20}u_{xxz} + 2I_{11}u_{xyz} + I_{02}u_{yyz}] \right\}$$

$$+ I_{02}u_{yyz}]$$

Far-Field

1st Order

2nd Order

$$v_{x}^{(Q)} = \frac{t^{4}}{r_{o}^{3}} \{I_{11}u_{xz} - (\frac{t}{r_{o}})[I_{21}u_{xxz} + I_{12}u_{xyz}] + \frac{1}{2}(\frac{t}{r_{o}})^{2}[I_{31}u_{xxz} + 2I_{22}u_{xxyz} + I_{13}u_{xyyz}]\}$$

$$v_{y}^{(Q)} = \frac{t^{4}}{r_{0}^{3}} \{I_{11}u_{yz} - (\frac{t}{r_{0}})[I_{21}u_{xyz} + I_{12}u_{yyz}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{31}u_{xxyz} + 2I_{22}u_{xyyz} + I_{13}u_{yyyz}]\}$$
(E.8)

$$v_{z}^{(Q)} = \frac{t^{4}}{r_{0}^{3}} \{I_{11}u_{zz} - (\frac{t}{r_{0}})[I_{21}u_{xzz} + I_{12}u_{yzz}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{31}u_{xxzz} + 2I_{22}u_{xyzz} + I_{13}u_{yyzz}]\}$$

$$v_{x}^{(R)} = \frac{t^{4}}{r_{0}^{3}} \{I_{02}u_{xz} - (\frac{t}{r_{0}})[I_{12}u_{xxz} + I_{03}u_{xyz}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{22}u_{xxxz} + 2I_{13}u_{xxyz} + I_{04}u_{xyyz}]\}$$

$$V_{y}^{(R)} = \frac{t^{4}}{r_{0}^{3}} \{I_{02}u_{yz} - (\frac{t}{r_{0}})[I_{12}u_{xyz} + I_{03}u_{yyz}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{22}u_{xxyz} + 2I_{13}u_{xyyz} + I_{04}u_{yyyz}]\}$$
(E.9)

$$v_{z}^{(R)} = \frac{t^{4}}{r_{0}^{3}} \{I_{02}u_{zz} - (\frac{t}{r_{0}})[I_{12}u_{xzz} + I_{03}u_{yzz}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{22}u_{xxzz} + 2I_{13}u_{xyzz} + I_{04}u_{yyzz}]\}$$

$$V_{x}^{(P)} = \frac{t^{4}}{r_{0}^{3}} \{I_{20}u_{xz} - (\frac{t}{r_{0}}) [I_{30}u_{xxz} + I_{21}u_{xyz}] + \frac{1}{2} (\frac{t}{r_{0}})^{2} [I_{40}u_{xxxz} + 2I_{31}u_{xxyz} + I_{22}u_{xyyz}]\}$$

$$V_{y}^{(P)} = \frac{t^{4}}{r_{0}^{3}} \{I_{20}u_{yz} - (\frac{t}{r_{0}}) [I_{30}u_{xyz} + I_{21}u_{yyz}] + \frac{1}{2} (\frac{t}{r_{0}})^{2} [I_{40}u_{xxyz} + 2I_{31}u_{xyyz} + I_{22}u_{yyyz}]\}$$
(F. 10)

$$v_{z}^{(P)} = \frac{t^{4}}{r_{0}^{3}} \{I_{20}u_{zz} - (\frac{t}{r_{0}}) [I_{30}u_{xzz} + I_{21}u_{yzz}] + \frac{1}{2} (\frac{t}{r_{0}})^{2} [I_{40}u_{xxzz} + 2I_{31}u_{xyzz} + I_{22}u_{yyzz}]\}$$

$$v_{x}^{(1x)} = \frac{t^{3}}{r_{0}^{2}} \{I_{10}u_{x} - (\frac{t}{r_{0}})[I_{20}u_{xx} + I_{11}u_{xy}] + \frac{1}{2}(\frac{t}{r_{0}})^{2}[I_{30}u_{xxx} + 2I_{21}u_{xxy} + I_{12}u_{xyy}]\}$$

2274H

$$\begin{split} \nu_{y}^{(1x)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{10}u_{y} - (\frac{t}{r_{o}})[I_{20}u_{xy} + I_{11}u_{yy}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{30}u_{xxy} + 2I_{21}u_{xyy} + I_{12}u_{yyy}] \right\} \\ \nu_{z}^{(1x)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{10}u_{z} - (\frac{t}{r_{o}})[I_{20}u_{xz} + I_{11}u_{yz}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{30}u_{xxz} + 2I_{21}u_{xyz} + I_{12}u_{yyz}] \right\} \\ \nu_{x}^{(1y)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{01}u_{x} - (\frac{t}{r_{o}})[I_{11}u_{xx} + I_{02}u_{xy}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{21}u_{xxx} + 2I_{12}u_{xxy} + I_{03}u_{xyy}] \right\} \\ \nu_{y}^{(1y)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{01}u_{y} - (\frac{t}{r_{o}})[I_{11}u_{xy} + I_{02}u_{yy}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{21}u_{xxy} + 2I_{12}u_{xyy} + I_{03}u_{yyy}] \right\} \\ \nu_{z}^{(1y)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{01}u_{z} - (\frac{t}{r_{o}})[I_{11}u_{xz} + I_{02}u_{yz}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{21}u_{xxz} + 2I_{12}u_{xyz} + I_{03}u_{yyz}] \right\} \\ \nu_{z}^{(1y)} &= \frac{t^{3}}{r_{o}^{2}} \left\{ I_{01}u_{z} - (\frac{t}{r_{o}})[I_{11}u_{xz} + I_{02}u_{yz}] + \frac{1}{2} (\frac{t}{r_{o}})^{2}[I_{21}u_{xxz} + 2I_{12}u_{xyz} + I_{03}u_{yyz}] \right\} \end{split}$$

#### APPENDIX F

#### FAR-FIELD SOURCE FORMULAS

As usual  $\vec{n}$  denotes the unit normal vector to a projected flat panel and  $\vec{i}_E$  and  $\vec{j}_E$  are, respectively, unit vectors along the x- and y-axis of the panel coordinate system (Appendix B). Define  $\vec{r}_0$  as the vector from the origin of panel coordinates to the point where velocity is being evaluated and  $r_0$  as its magnitude. Certain auxiliary vectors are needed:

$$\vec{D} = -\left[3 \left(\frac{\vec{n} \cdot \vec{r}_{o}}{r_{o}}\right) \frac{\vec{r}_{o}}{r_{o}} - \vec{n}\right]$$

$$\vec{D}_{i} = -\left[3 \left(\frac{\vec{1}_{E} \cdot \vec{r}_{o}}{r_{o}}\right) \frac{\vec{r}_{o}}{r_{o}} - \vec{1}_{E}\right]$$

$$\vec{D}_{j} = -\left[3 \left(\frac{\vec{j}_{E} \cdot \vec{r}_{o}}{r_{o}}\right) \frac{\vec{r}_{o}}{r_{o}} - \vec{J}_{E}\right]$$
(F.1)

The far-field expressions for the source velocities are

$$\vec{V}^{(0)} = \frac{t^2 I_{00}}{r_0^2} \frac{\vec{r}_0}{r_0}$$
 (F.2)

$$\vec{v}^{(P)} = -\frac{t^4}{r_0^3} I_{20} \vec{D}$$

$$\vec{V}^{(Q)} = -\frac{t^4}{r_0^3} I_{11} \vec{D}$$
 (F.3)

$$\vec{v}^{(R)} = -\frac{t^4}{r_0^3} I_{02} \vec{D}$$

$$\frac{1}{7}(1x) = \frac{t^3}{r_0^2} I_{10} \frac{\vec{r}_0}{r_0} - \frac{t^4}{r_0^3} [I_{20}\vec{D}_i + I_{11}\vec{D}_j]$$

$$\frac{1}{7}(1y) = \frac{t^3}{r_0^2} I_{01} \frac{\vec{r}_0}{r_0} - \frac{t^4}{r_0^3} [I_{11}\vec{D}_i + I_{02}\vec{D}_j]$$
(F.4)

The fact that three auxiliary vectors (F.1) are required means that in effect a transformation into panel coordinates has been performed. It appears to be somewhat faster computationally to use the vector far-field forms above rather than simply truncate the intermediate field formulas in panel coordinates.

### APPENDIX G SOME SPECIAL NEAR-FIELD FORMULAS

The near-field formulas of Appendices D and I can have numerical difficulties under certain circumstances. Some of these are inherent in the formulas, while others are due to extremes in panel dimensions - particularly very long thin panels. Special formulas have been developed to deal with these situations.

### "Small Logs" (Long Thin Panels)

First consider side 32. If

$$\frac{r_3 + r_2 - d_{32}}{r_3 + r_2 + d_{32}} < \varepsilon_3 = 10^{-3}$$
 (G.1)

Then define

$$\varepsilon^{2} = \frac{h_{32}^{2}}{1 + m_{32}^{2}} + z^{2}$$

$$d_{3} = \left| \frac{m_{32}}{\sqrt{1 + m_{32}^{2}}} (x - \xi_{3}) + \frac{1}{\sqrt{1 + m_{32}^{2}}} (y - \eta_{3}) \right|$$
(G.2)

In the argument of the logarithm  $L^{(32)}$  set

 $d_2 = d_{32} - d_3$ 

$$r_3 + r_2 - d_{32} = \frac{1}{2} \left( \frac{1}{d_3} + \frac{1}{d_2} \right) \epsilon^2 - \frac{1}{8} \left( \frac{1}{d_3^3} + \frac{1}{d_2^3} \right) \epsilon^4$$
 (G.3)

### For Side 41

A similar procedure is used for  $r_1 + r_4 - d_{41}$ . Define

$$\varepsilon^2 = \frac{h_{41}^2}{1 + m_{41}^2} + z^2 \tag{G.4}$$

$$d_4 = \left| \frac{m_{41}}{\sqrt{1 + m_{41}^2}} (x - \xi_4) + \frac{1}{\sqrt{1 + m_{41}^2}} (y - \eta_3) \right|$$
 (G.4)

$$d_1 = d_{41} - d_4$$

Then if

$$\frac{r_4 + r_1 - d_{41}}{r_4 + r_1 + c_{41}} < \varepsilon_3 \tag{G.5}$$

set

$$r_4 + r_1 - d_{41} = \frac{1}{2} \left( \frac{1}{d_4} + \frac{1}{d_1} \right) \epsilon^2 - \frac{1}{8} \left( \frac{1}{d_4^3} + \frac{1}{d_1^3} \right) \epsilon^4$$
 (G.6)

The formulas are slightly different for the other two sides. If

$$\frac{r_1 + r_2 - d_{12}}{r_1 + r_2 + d_{12}} < \varepsilon_3 \tag{G.7}$$

def ine

$$\varepsilon^{2} = (y - \eta_{1})^{2} + z^{2}$$

$$d_{1} = x - \xi_{1}$$

$$d_{2} = d_{12} - d_{1}$$
(G.8)

and set

$$r_1 + r_2 - d_{12} = \frac{1}{2} \left( \frac{1}{d_1} + \frac{1}{d_2} \right) \epsilon^2 - \frac{1}{8} \left( \frac{1}{d_1^3} + \frac{1}{d_2^3} \right) \epsilon^4$$
 (G.9)

Finally, if

$$\frac{r_3 + r_4 - d_{34}}{r_3 + r_4 + d_{34}} < \epsilon_3 \tag{G.10}$$

define

$$\varepsilon^2 = (y - \eta_3)^2 + z^2$$

$$d_A = (x - \xi_A)$$
(G.11)

$$d_3 = d_{34} - d_4$$

and set

$$r_3 + r_4 - d_{34} = \frac{1}{2} \left( \frac{1}{d_3} + \frac{1}{d_4} \right) \epsilon^2 - \frac{1}{8} \left( \frac{1}{d_3^3} + \frac{1}{d_4^3} \right) \epsilon^4$$
 (G.12)

#### "T-Derivatives"

The individual T-derivatives in Appendix D become indeterminate if the point (x,y,z) is on the extension of a side of the panel. The "fix" of Ref. 5 is designed to remedy this, but it is inadequate for two reasons if the panels are long enough. One is that if the point is near the side itself, the fix is inappropriate. The other is that the criterion is too stringent if the point is indeed near the side extension. The following appears to be a reasonable "fix of the fix."

#### 1. Slanted sides

If  $(y - \eta_1)(y - \eta_3) < 0$ , skip this part. Otherwise calculate

$$\varepsilon_{32}^2 = h_{32}^2 + z^2$$

$$\varepsilon_{41}^2 = h_{41}^2 + z^2$$
(G.13)

If 
$$\epsilon_{32}^2/y^2 < 0.0001$$
, use

$$-\frac{\partial T_{2}^{(32)}}{\partial x} + \frac{\partial T_{3}^{(32)}}{\partial x} = -\frac{\partial T_{2}^{(32)}}{\partial y} + \frac{\partial T_{3}^{(32)}}{\partial y} = 0$$

$$-\frac{\partial T_{2}^{(32)}}{\partial z} + \frac{\partial T_{3}^{(32)}}{\partial z} = \frac{m_{32}}{\sqrt{1 + m_{32}^{2}}} \left( \frac{1}{|y - \eta_{3}|} - \frac{1}{|y - \eta_{1}|} \right)$$
(G.14)

If  $\varepsilon_{A1}^2/y^2 < 0.0001$ , use

$$-\frac{\partial T_{1}^{(41)}}{\partial x} + \frac{\partial T_{4}^{(41)}}{\partial x} = -\frac{\partial T_{1}^{(41)}}{\partial y} + \frac{\partial T_{4}^{(41)}}{\partial y} = 0,$$
(G.15)

$$-\frac{\partial T_{1}^{(41)}}{\partial z}+\frac{\partial T_{4}^{(41)}}{\partial z}=-\frac{m_{41}}{\sqrt{1+m_{41}^{2}}}\left(\frac{1}{|y-\eta_{1}|}-\frac{1}{|y-\eta_{3}|}\right)$$

#### 2. Parallel sides

If  $h_{32}h_{41} < 0$ , skip this part. Otherwise calculate

$$\varepsilon_{12}^{2} = (h - n_{1})^{2} + z^{2}$$

$$\varepsilon_{34}^{2} = (y - n_{3})^{2} + z^{2}$$
(G.16)

If

$$\frac{\varepsilon_{12}^2}{\{x - (\xi_1 + \xi_2)/2\}} < 0.0001, \qquad (G.17)$$

use

$$-\frac{\partial T_{2}^{(32)}}{\partial x} + \frac{\partial T_{1}^{(41)}}{\partial x} = -\frac{\partial T_{2}^{(32)}}{\partial y} + \frac{\partial T_{1}^{(41)}}{\partial y} = 0$$

$$-\frac{\partial T_{2}^{(32)}}{\partial z} + \frac{\partial T_{1}^{(41)}}{\partial z} = \frac{m_{41}}{|x - \xi_{1}|} - \frac{m_{32}}{|x - \xi_{2}|}$$
(G. 18)

If

$$\frac{\varepsilon_{34}^{2}}{\{x - (\xi_{3} + \xi_{4})/2\}} 2^{< 0.0001}, \qquad (G.19)$$

use

$$-\frac{\partial T_{3}^{(32)}}{\partial x} + \frac{\partial T_{4}^{(41)}}{\partial x} = -\frac{\partial T_{3}^{(32)}}{\partial y} + \frac{\partial T_{4}^{(41)}}{\partial y} = 0$$

$$\frac{\partial T_{2}^{(32)}}{\partial z} - \frac{\partial T_{1}^{(41)}}{\partial z} = \frac{m_{32}}{|x - \xi_{3}|} - \frac{m_{41}}{|x - \xi_{4}|}$$
(G.20)

#### Edge Vortex Formulas Near Extended Line

These are needed for small values of

$$q^2 = (y - \eta_1)^2 + z^2$$
 (G.21)

If

$$\frac{q^2}{\left[x - \xi_1 \text{ or } 2\right]^2} < 2.5 \cdot 10^{-2}$$
 (G.22)

use the following formula for  $J_{0n}(F)$ 

$$J_{0n}(F) = \frac{\operatorname{sgn}(x - \xi_1)}{n - 1} \left\{ \left[ \frac{1}{(\xi_2 - x)^{n-1}} - \frac{1}{(\xi_1 - x)^{n-1}} \right] - \frac{n(n - 1)}{2(n + 1)} q^2 \left[ \frac{1}{(\xi_2 - x)^{n+1}} - \frac{1}{(\xi_1 - x)^{n+1}} \right] \right\}$$
(G.23)

#### "Simpson's Rule"

Define R as the distance of (x,y,z) from the closest point of the line vortex and d as the length of the line vortex. Then if

$$R/d > 10$$
 (G.24)

do not use the recursion formulas of Appendix I, but calculate the  $J_{mn}^{}$  by the three-point Simpson's rule

$$J_{mn} = \int_{\xi_1}^{\xi_2} F(\xi) d\xi = \frac{\xi_2 - \xi_1}{6} \left[ F(\xi_1) + 4F(\frac{\xi_1 + \xi_2}{2}) + F(\xi_2) \right]$$
 (G.25)

#### APPENDIX H

# CALCULATION OF VORTICITY INDUCED VELOCITIES IN TERMS OF SOURCE INDUCED VELOCITIES

The calculation of the vorticity influences can be made much more efficient by expressing them in terms of the corresponding source influence, which of course, must be calculated in any event. The use of this procedure was put forward in Ref. 21. The portion of the theory that is needed for the present purpose is quite easy to state.

Suppose there is a variable source density  $\sigma$  on a portion of a plane or curved surface S. The velocity due to this at a point (x,y,z) is

$$\vec{V}$$
 (source) =  $\iint_{S} \frac{\vec{r}}{r^3} cdS$  (H.1)

where  $\vec{r}$  and r have their usual meanings. If there is a vorticity distribution on S of strength

$$\vec{\omega} = \omega \vec{t} \tag{H.2}$$

The Biot-Savart law gives the resulting induced velocity as

$$\vec{V}$$
 (vorticity) =  $\iint_{S} \frac{\vec{t} \times \vec{r}}{r^3} \omega dS$  (H.3)

Then if  $\vec{t}$  is a <u>constant</u> vector and if  $\omega$  has the same spatial variation as  $\sigma$ , the velocity due to the vorticity distribution may be expressed in terms of the velocity due to the source distribution as

$$\vec{V}$$
 (vorticity) =  $\vec{t} \times \vec{V}$  (source) (H.4)

since  $\vec{\omega}$  can be resolved into components, each of which has a constant direction, the restriction to a constant  $\vec{t}$  is not serious. Although the above results apply to a curved surface S, it is far simpler to apply to a flat surface. In the present context the above is applied to the flat projected panel.

Figure 8 illustrates the projection of a curved panel S on the surface of a flat panel A in the tangent plane. In particular, Figure 8 illustrates  $\vec{r}$  from a point of S and the vector  $\vec{r}_f$  from a point of the projected flat panel to the point (x,y,z). Evidently

$$\vec{r}_f = (x - \xi)\vec{i}_e + (y - \eta)\vec{j}_e + z\vec{k}_e$$
 (H.5)

where  $\vec{i}_e$ ,  $\vec{k}_e$  are unit vectors along the axes of the panel coordinate system. As in Appendix A, the vertical distance  $\zeta$  between the curved panel and its projection is approximated by its leading term  $\zeta_2$ , which represents a surface of second degree

$$\zeta_2 = P\xi^2 + 2Q\xi\eta + R\eta^2$$
 (H.6)

The aim is to obtain a consistent two-term expansion of Eq. (H.3) and express the results in terms of source effects. From Eq. (2.6.7) it is seen that a two-term expansion of the vector vorticity distribution is

$$\dot{\omega} = \dot{\omega}_0 + \dot{\omega}_1 \tag{H.7}$$

where

$$\vec{\omega}_{0} = \mu_{y} \vec{1}_{e} - \mu_{x} \vec{J}_{e}$$
 (H.8)

is zero order and

$$\vec{\omega}_{1} = 2(\mu_{xy}\xi + \mu_{yy}n)\hat{i}_{e} - 2(\mu_{xx}\xi + \mu_{xy}n)\hat{j}_{e} + 2[-(Q\xi + Rn)\mu_{x} + (P\xi + Qn)\mu_{y}]\hat{k}_{e}$$
(H.9)

is first order. The constants  $\mu_{\chi}$ ,  $\mu_{\chi\chi}$ , etc. are the derivatives of the equivalent dipole distribution as given by Eq. (2.6.4). From Fig. 8 it can be seen that

$$\vec{r} = \vec{r}_f - \zeta_2 \vec{k}_e \tag{H.10}$$

Thus a two-term expansion of the veltity at (x,y,z) due to the vorticity on the panel is

$$\vec{V}_{\omega} = \iint_{S} \frac{\vec{w} \times \vec{r}}{r^{3}} dS = \iint_{A} \left\{ \frac{\vec{w}_{0} \times \vec{r}_{f}}{r_{f}^{3}} (1 + 3z \frac{\zeta_{2}}{r_{f}^{2}}) + \frac{\vec{w}_{1} \times \vec{r}_{f}}{r_{f}^{3}} - \zeta_{2} \frac{\vec{w}_{0} \times \vec{k}_{e}}{r_{f}^{3}} \right\} dA$$
(H.11)

$$= \vec{\omega}_{0} \times \iint_{A} \left[ \frac{\vec{r}_{f}}{r_{f}^{3}} (1 + 3z \frac{\zeta_{2}}{r_{f}^{2}}) - \zeta_{2} \frac{\vec{k}_{e}}{r_{f}^{3}} \right] dA + \iint_{A} \frac{\vec{\omega}_{1} \times \vec{r}_{f}}{r_{f}^{3}} dA$$

By taking the gradient of the  $\phi^{(0)}$  and  $\phi^{(c)}$  terms of the source expansion in Eqs. (A.33) and (A.34) of Appendix A, it can be seen that the integral multiplying  $\vec{\omega}_0$  above is just the sum of superscript 0 and c source terms for unit source density. Specifically this combination is the velocity

$$\nabla = \nabla^{(0)} + [P\nabla^{(P)} + 2Q\nabla^{(Q)} + R\nabla^{(R)}]$$
 (H.12)

This same combination appears in Eqs. (2.4.1). To analyze the last term of Eq. (H.11), collect terms in Eq. (H.9) to obtain

$$\dot{\omega}_{1} = 2(\xi \dot{q}_{x} + n \dot{q}_{y}) \tag{H.13}$$

where the vectors

$$\vec{q}_{x} = \mu_{xy} \vec{i}_{e} - \mu_{xx} \vec{j}_{e} + (P\mu_{y} - Q\mu_{x})\vec{k}_{e}$$

$$\vec{q}_{y} = \mu_{yy} \vec{i}_{e} - \mu_{xy} \vec{j}_{e} + (Q\mu_{y} - R\mu_{x})\vec{k}_{e}$$
(H.14)

are constants in the integration. The integrals that result from using Eq. (H.13) in the last term of Eq. (H.11) are the velocities due to linearly varying source densities in the  $\xi$  and  $\eta$  directions having unit slope, i.e.  $\gamma^{(1x)}$  and  $\gamma^{(1y)}$  of Eq. (2.4.1).

Thus the velocity due to vorticity on the panel may be expressed in terms of source velocities as follows

$$\vec{v}_{\omega} = \vec{v}_{0} \times \vec{v}' + 2[\vec{q}_{x} \times \vec{v}^{(1x)} + \vec{q}_{y} \times \vec{v}^{(1y)}]$$
 (H.15)

It is interesting to note that Eq. (H.15) can be evaluated directly in reference coordinates after the relevant source velocities have been calculated and put into this system. With regard to the velocities due to the vorticity, this not only means that no transformations between panel and reference coordinates are required, but it also means that the question of far-field calculation need never arise. If the source velocities have been computed by far-field

formulas, they simply are used in Eq. (H.15), so that in effect the vorticity calculation uses the source far-field procedure. The present code takes advantage of the second of these facts, the use of far-field source formulas, but performs the calculation in panel coordinates.

The implementation in panel coordinates proceeds as follows.

Define

$$\alpha_{1} = -\frac{\eta_{3}}{w}$$

$$\beta_{1} = \frac{h_{F}}{w} - c(\eta_{1} + \eta_{3})$$

$$\alpha_{2} = \frac{\eta_{1}}{w}$$

$$\beta_{2} = -\frac{h_{S}}{w} + c(\eta_{1} + \eta_{3})$$
(H.16)

then

$$\vec{v}_{o} \times \vec{v}' = B_{F} \{ \vec{i}_{e} [-v_{z}'\alpha_{1}] + \vec{j}_{e} [-v_{z}'\beta_{1}] + \vec{k}_{e} [\beta_{1}v_{y}' + \alpha_{1}v_{x}'] \} 
+ B_{S} \{ \vec{i}_{e} [-v_{z}'\alpha_{2}] + \vec{j}_{e} [-v_{z}'\beta_{2}] + \vec{k}_{e} [\beta_{2}v_{y}' + \alpha_{2}v_{x}'] \}$$
(H.17)

Define

$$\delta_1 = \frac{1}{2w}$$
 $\epsilon_1 = c$ 

$$\delta_2 = -\frac{1}{2w}$$
 $\epsilon_1 = -c$ 
(H.18)

then

$$\vec{q}_{x} \times \vec{V}^{(1x)} = B_{F} \{ \vec{i}_{e} [V_{y}^{(1x)}(P\beta_{1} - Q\alpha_{1}) + \vec{j}_{e}[V_{x}^{(1x)}(P\beta_{1} - Q\alpha_{1}) - V_{z}^{(1x)}\delta_{1}] \}$$

$$+ \vec{k}_{e}[V_{y}^{(1x)}\delta_{1}] \}$$

$$+ B_{S} \{ \vec{i}_{e} [V_{y}^{(1x)}(P\beta_{2} - Q\alpha_{2}) + \vec{j}_{e}[V_{x}^{(1x)}(P\beta_{2} - Q\alpha_{2}) - V_{z}^{(1x)}\delta_{2}] \}$$

$$+ \vec{k}_{e}[V_{y}^{(1x)}\delta_{2}] \}$$

$$(H.19)$$

$$\begin{split} \vec{q}_{y} \times \vec{V}^{(1y)} &= B_{F} \ \{\vec{i}_{e} \ [-V_{z}^{(1y)} \delta_{1} - V_{y}^{(1y)} (Q\beta_{1} - R\alpha_{1}) + \vec{j}_{e} [V_{x}^{(1y)} (Q\beta_{1} - R\alpha_{1}) - V_{z}^{(1y)} \epsilon_{1}] \\ &+ \vec{k}_{e} [V_{y}^{(1y)} \epsilon_{1} + V_{x}^{(1y)} \delta_{1}] \} \\ &+ B_{S} \ \{\vec{i}_{e} \ [-V_{z}^{(1y)} \delta_{2} - V_{y}^{(1y)} (Q\beta_{2} - R\alpha_{2}) + \vec{j}_{e} [V_{x}^{(1y)} (Q\beta_{2} - R\alpha_{2}) - V_{z}^{(1y)} \epsilon_{2}] \\ &+ \vec{k}_{e} [V_{y}^{(1y)} \epsilon_{2} + V_{x}^{(1y)} \delta_{2}] \} \end{split}$$

2274H H-5

#### APPENDIX I

# FORMULAS FOR THE EFFECT OF NEAR-FIELD LINE VORTEX ALONG A STREAMWISE EDGE OF A PANEL

### Derivation of the Influence of an Edge Vortex

The equation of the curved panel is Eq. (H.6). For definiteness consider the case when the edge in question lies in the plane  $\eta = \eta_1$ , i.e. the first N-line (Fig. 3). The modifications for the case of the second N-line are obvious. Thus the curve c along which the vortex lies is

$$\zeta = \zeta(\xi) = P\xi^2 + 2Q\xi\eta_1 + R\eta_1^2$$
 (I.1)

The unit vector along this curve is

$$\dot{t} = \frac{1}{\sqrt{1 + T^2}} \left[ \dot{f}_e + T \dot{J}_e \right]$$
 (1.2)

where

$$T = 2(P\xi + Qn_1)$$
 (1.3)

The velocity due to the vortex is

$$\vec{\nabla}_{\Gamma} = \int_{C} \frac{\vec{t} \times \vec{r}}{r^3} \mu ds \qquad (1.4)$$

where  $\mu$  is the edge value of the equivalent dipole strength. Arc length along the curve is related to distance in the tangent plane by

$$ds = \sqrt{1 + T^2} d\xi$$
 (1.5)

Thus with r expressed in panel coordinates (Fig. 8)

$$(\vec{t} \times \vec{r})ds = \{[ 0 - T(y - \eta_1) ]^{\frac{1}{4}}e$$

$$[ z + T(x - \xi) + \zeta]^{\frac{1}{4}}e$$

$$[(y - \eta_1) + 0 ]^{\frac{1}{4}}e^{d\xi}$$
(1.6)

where the terms in the first column of Eq. (I.6) are first order, and those in the second column are second order. This expression is exact except for the approximation  $\zeta = \zeta_2$ .

As shown in Appendix A, a three-term expansion of  $1/r^3$  is

$$\frac{1}{r^3} = \frac{1}{r_f^3} \left[ 1 + 3c_1 + 3(c_1^2 + c_2) \right] \tag{1.7}$$

where  $r_f$  is distance from a point of the flat tangent panel and where

$$c_{1} = \frac{z\zeta_{2}}{r_{f}^{2}}$$

$$c_{2} = \frac{3}{2}c_{1}^{2} - \frac{1}{2}\frac{\zeta_{2}^{2}}{r_{f}^{2}}$$
(I.8)

Along the N-line the equivalent dipole strength varies linearly

$$\mu = B(h + \xi) \tag{1.9}$$

where h is the total arc length along the N-line up to the n-axis of panel coordinates (see Section 9.2 of Ref. 2), and B is the unknown value of vorticity that is determined from the Kutta condition. The fundamental flow is obtained by setting B equal to unity in Eq. (I.9). Multiplying the above expansions gives the components of the vortex velocity as follows

$$\begin{split} V_{\Gamma_{X}} &= \int_{\xi_{1}}^{\xi_{2}} \frac{1}{r_{f}^{3}} \left\{ 0 - \left[ T(y - \eta_{1})h \right] - \left[ T(y - \eta_{1})(3c_{1}h + \xi) \right] \right\} d\xi \\ V_{\Gamma_{y}} &= \int_{\xi_{1}}^{\xi_{2}} \frac{1}{r_{f}^{3}} \left\{ -zh + \left[ -z(3c_{1}h + \xi) + h(T(x_{1} - \xi)_{1} + \zeta_{2}) \right] \right. \\ & + \left[ -z\{3(c_{1}^{2} + c_{2})h + 3c_{1}\xi\} + (3c_{1}h + \xi)(T(x - \xi) + \zeta_{2}) \right] \} d\xi \\ V_{\Gamma_{z}} &= (y - h_{1}) \int_{\xi_{1}}^{\xi_{2}} \frac{1}{r_{f}^{3}} \left\{ h + \left[ 3c_{1}h + \xi \right] + \left[ 3(c_{1}^{2} + c_{2})h + 3c_{1}\xi \right] \right\} d\xi \end{split}$$

The integrals in Eq. (1.10) have the form

$$J_{mn} = \int_{\xi_1}^{\xi_2} \frac{\xi^m}{r_f^n} d\xi \qquad (1.11)$$

Once the  $\mathbf{J}_{0n}$  and  $\mathbf{J}_{1n}$  have been calculated the others are calculated from the recursion formulas

$$J_{mn} = J_{(m-2)(n-2)} + 2xJ_{(m-1)n} - p^2J_{(m-2)n}$$
 (I.12)

where

$$p^2 = x^2 + (y - \eta_1)^2 + z^2$$
 (I.13)

The required  $J_{0n}$  and  $J_{1n}$  are

$$J_{01} = \log \frac{r_1 + r_2 + d_{12}}{r_1 + r_2 - d_{12}} = -L^{(12)}$$

$$J_{11} = r_2 - r_1 + xJ_{01}$$

$$J_{03} = \frac{1}{q^2} \left[ \frac{\xi_2 - x}{r_2} - \frac{\xi_1 - x}{r_1} \right]$$

$$J_{13} = \frac{1}{r_1} - \frac{1}{r_2} + xJ_{03}$$

$$J_{05} = \frac{1}{3q^2} \left[ \frac{\xi_2 - x}{r_2^3} - \frac{\xi_1 - x}{r_1^3} + 2J_{03} \right]$$

$$J_{15} = -\frac{1}{3} \left( \frac{1}{r_2^3} - \frac{1}{r_1^3} \right) + xJ_{05}$$

$$J_{07} = \frac{1}{5q^2} \left[ \frac{\xi_2 - x}{r_2^5} - \frac{\xi_1 - x}{r_1^5} + 4J_{05} \right]$$

$$J_{17} = -\frac{1}{5} \left( \frac{1}{r_2^5} - \frac{1}{r_1^5} \right) + xJ_{07}$$

where

$$q^2 = (y - \eta_1)^2 + z^2$$
 (1.15)

and where  $r_1$  and  $r_2$  are, respectively, distances of the point (x,y,z) from the ends of the interval, i.e.,

$$r_k^2 = (x - \xi_k)^2 + (y - \eta_1)^2 + z^2$$
 (1.16)

In terms of certain auxiliary functions,  $F_n$ , the velocity components of Eq. (I.10) are

$$V_{\Gamma X} = -(y - \eta_1)[hF_1 + F_5]$$

$$V_{\Gamma Y} = -zhJ_{03} + [-zF_2 + hF_3] - z[3hF_4 + F_6] + F_7$$

$$V_{\Gamma X} = +(y - \eta_1)[hJ_{03} + F_2 + 3hF_4 + F_6]$$
(I.17)

The auxiliary functions for on-body panels are:

$$F_1 = 2PJ_{13} + 2Q\eta_1J_{03}$$

$$F_2 = 3zh[PJ_{25} + 2Q\eta_1J_{15} + R\eta_1^2J_{05}] + \{J_{13}\}$$

$$F_3 = 2PxJ_{13} + 2Q\eta_1xJ_{03} - PJ_{23} + R\eta_1^2J_{03}$$

$$F_4 = \frac{5}{2} z^2 Q_7 - \frac{1}{2} Q_5$$

$$Q_{i} = [P^{2}J_{4,i} + 4PQ\eta_{1}J_{3,i} + (2PR + 4Q^{2})\eta_{1}^{2}J_{2,i} + 4QR\eta_{1}^{3}J_{1,i} + R^{2}\eta_{1}^{4}J_{0,i}]$$
 (I.18)

$$F_5 = 6zh[P^2J_{35} + 3PQn_1J_{25} + PRn_1^2J_{15} + 2Q^2n_1^2J_{15} + QRn_1^3J_{05}] + \{2PJ_{23} + 2Qn_1J_{13}\}$$

$$F_6 = \{3z[PJ_{35} + 2Q\eta_1J_{25} + R\eta_1^2J_{15}]\}$$

$$F_7 = 3zh[-P^2J_{45} + (2P^2x - 2PQn_1)J_{35} + 6PQxn_1J_{25} + (4Q^2xn_1^2 + 2PRx_1^2 + 2QRn_1^3)J_{15}$$

+ 
$$(2QRxn_1^3 + R^2n_1^4)J_{05}] + \{-PJ_{33} + 2PxJ_{23} + (2Qxn_1 + Rn_1^2)J_{13}\}$$

The formulas for wake panels are obtained from Eq. (I.18) be deleting all terms in  $\{\}$  and replacing h by L (total).

For the semi-infinite last wake additional changes are made to the formulas (I.14) for the  ${\bf J}_{mn}$  corresponding to

$$\xi_2 + \infty \qquad r_2 + \infty \qquad \xi_2/r_2 + 1$$
 (I.19)

Furthermore, P and Q are set equal to zero.

2274H

# APPENDIX J FAR-FIELD EDGE VORTEX FORMULAS

Compute

$$r_F^2 = \left[x - \left(\frac{\xi_1 + \xi_2}{2}\right)\right]^2 + \left[y - \eta_1\right]^2 + z^2$$
 (J.1)

If

$$(\xi_2 - \xi_1)^2/r_F^2 < 0.001,$$

use

$$V_{\Gamma x} = -(y - \eta_1) T_0 I$$

$$V_{\Gamma y} = [-z + T_0 (x - \frac{\xi_1 + \xi_2}{2}) + \xi_0] I$$

$$V_{\Gamma z} = (y - \eta_1) I$$
(J.2)

where

$$I = \frac{\xi_2 - \xi_1}{r_f^3} \left( h + \frac{\xi_1 + \xi_2}{2} \right)$$

$$T_0 = 2 \left[ P \frac{\xi_1 + \xi_2}{2} + Q \eta_1 \right]$$

$$\xi_0 = \left( P \frac{\xi_1 + \xi_2}{2} \right)^2 + 2Q \eta_1 \left( \frac{\xi_1 + \xi_2}{2} \right) + R \eta_1^2$$
(J.3)

For the second N-line the obvious quantities are replaced by the corresponding ones. The above equations replace the elaborate formulas of Appendix I.

# APPENDIX K PARABOLIC CHORDWISE VORTICITY

The assumption of constant vorticity around a wing section (linear variation of the underlying dipole strength) can lead to numerical difficulties on certain wings with very thin trailing edges. Accordingly, a second chordwise variation option is required. The important consideration is to have the "bound" vorticity strength approach zero at the trailing edge on both upper and lower wing surfaces. This is accomplished by a quadratic global variation of vorticity as a function of arc length along an N-line. While only two global chordwise variations have been incorporated into the present method, many such variations are possible. As will be seen below, the required modifications to the program are quite minor. This flexibility is due to the use of vorticity as an auxiliary singularity.

To implement the parabolic vorticity option, the linear variation of the underlying dipole strength along an N-line is replaced by a cubic variation having zero derivative at the upper and lower trailing edge. Specifically,

$$\mu = Bs \left\{ 3 \frac{s}{L \text{ (total)}} - 2 \left[ \frac{s}{L \text{ (total)}} \right]^2 \right\}$$
 (K.1)

where s is arc length along the N-line. The above is a global variation. The variation over an individual panel can be no higher a degree than quadratic, and in the present method has been taken as linear. It is assumed that the underlying dipole distribution on a panel agrees with Eq. (K.1) at the corners of the panel and varies linearly in between. Thus, the overall behavior is that of an inscribed-polygon approximation to Eq. (K.1).

For an individual panel the arc length measured along an N-line from the trailing edge to the lower corner of the panel is  $h_F + \xi_1$  or  $h_S + \xi_4$  while the arc length associated with the upper corner is  $h_F + \xi_2$  or  $h_S + \xi_3$ . The linear function that agrees with Eq. (K.1) at these two values of arc length is

$$\mu = B(H + I\xi) \tag{K.2}$$

where on the two N-lines the constants H and I have the values

$$\begin{split} H_F &= \frac{3}{L_F \text{ (total)}} \left( h_F^2 - \xi_1 \xi_2 \right) - \frac{2}{\left[ L_F \text{ (total)} \right]^2} \left[ h_F^3 - \xi_1 \xi_2 (3 h_F + \xi_1 + \xi_2) \right] \\ I_F &= \frac{3}{L_F \text{ (total)}} \left( 2 h_F - \xi_1 + \xi_2 \right) - \frac{2}{\left[ L_F \text{ (total)} \right]^2} \left[ 3 h_F^2 + 3 h_F (\xi_1 + \xi_2) \right. \\ &+ \left. \xi_1^2 + \xi_2^2 + \xi_1 \xi_2 \right] \\ H_S &= \frac{3}{L_S \text{ (total)}} \left( h_S^2 - \xi_3 \xi_4 \right) - \frac{2}{\left[ L_S \text{ (total)} \right]^2} \left[ h_S^3 - \xi_3 \xi_4 (3 h_S + \xi_3 + \xi_4) \right] \\ I_S &= \frac{3}{L_S \text{ (total)}} \left( 2 h_S - \xi_3 + \xi_4 \right) - \frac{2}{\left[ L_S \text{ (total)} \right]^2} \left[ 3 h_S^2 + 3 h_S (\xi_3 + \xi_4) \right. \\ &+ \left. \xi_3^2 + \xi_4^2 + \xi_3 \xi_4 \right] \end{split}$$

where all symbols have the same meaning as in Section 2.6.1. Thus the quadratic form (2.6.9) for the variation of dipole strength over a panel is replaced by

$$\mu = \frac{B_F I_F - B_S I_S}{w} \xi \eta + \frac{B_F H_F - B_S H_S}{w} \eta + \frac{B_S I_S \eta_1 - B_F I_F \eta_3}{w} \xi + \frac{B_S H_S \eta_1 - B_F H_F \eta_3}{w} + c(B_F - B_S)(\eta - \eta_3)(\eta - \eta_1)$$
(K.4)

The dipole derivative formulas of Section 2.6.1 are modified in an obvious way, specifically

- a. Terms containing c are not changed.
- b. In terms containing  $h_F$  or  $h_S$  these quantities are replaced by  $H_F$  or  $H_S$ , respectively.
- c. All other terms are multiplied by  $I_F$  or  $I_S$  as appropriate.

The wake formulas are unchanged except for c. In the constant chordwise vorticity option, the parameter c is nonzero on wake panels if the "piecewise linear" spanwise variation of vorticity is used. However, if the parabolic chordwise vorticity option is used, c is taken as zero on all panels.

The near-field edge-vortex formulas (Appendix I) are modified as follows:

 $F_7$  = unchanged

 $F_2$  = replace  $h_F$  by  $H_F$  multiply  $J_{13}$  by  $I_F$ 

 $F_3$  = unchanged

$$F_4$$
 = unchanged (K.5)

$$F_5$$
 = Replace  $h_F$  by  $H_F$  multiply [2PJ<sub>23</sub> + 2Qn<sub>1</sub>J<sub>13</sub>] by  $I_F$ 

 $F_6$  = multiply entire term by  $I_F$ 

$$F_7$$
 = replace  $h_F$  by  $H_F$  multiply  $[-PJ_{33} + 2P_xJ_{23} + (2Q_xT_1 + RT_1^2)J_{13}]$  by  $I_F$ 

The wake formulas are unchanged. Replace H by  $L_F(tot.)$  and set I = 0.

Note that the terms multiplied by I are exactly the terms neglected in the wake.

In the far field (Appendix J), the only change is that I becomes

$$I = \frac{d_F}{r_F^3} (H_F + \frac{\xi_1 + \xi_2}{2} I_F)$$
 (K.6)

### APPENDIX L B DERIVATIVES AT SECTION EDGES

If the k-th strip is last in a section, the square bracket in Eq. (2.6.30) of Section 2.6.5 is replaced by

$$[DB_{k-2} + EB_{k-1} + FB_{k}]$$
 (L.1)

$$D = \frac{w_{k}}{w_{k-1} + 1/2(w_{k-2} + w_{k})} \left( \frac{w_{k-1} + w_{k}}{w_{k-2} + w_{k-1}} \right)$$

$$E = -4w_{k} \frac{w_{k-1} + 1/2(w_{k-2} + w_{k})}{(w_{k-2} + w_{k-1})(w_{k-1} + w_{k})}$$

$$F = w_{k} \frac{w_{k-2} + 3w_{k-1} + 2w_{k}}{(w_{k-1} + w_{k})[w_{k-1} + 1/2(w_{k-2} + w_{k})]}$$
(L.2)

If the k-th strip is first in a section, the square bracket is replaced by

$$[DB_{k} + EB_{k+1} + FB_{k+2}]$$
 (L.3)

$$D = -w_k \frac{2w_k + 3w_{k+1} + w_{k+2}}{(w_k + w_{k+1})[w_{k+1} + 1/2(w_k + w_{k+2})]}$$

$$E = 4w_k \frac{w_{k+1} + 1/2(w_k + w_{k+2})}{(w_k + w_{k+1})(w_{k+1} + w_{k+2})}$$
 (L.4)

$$\bar{r} = -\frac{w_k}{w_{k+1} + 1/2(w_k + w_{k+2})} \left( \frac{w_k + w_{k+1}}{w_{k+1} + w_{k+2}} \right)$$

If a section has only one strip, eliminate the square bracket, i.e.

$$D = E = F = 0$$
 (L.5)

If the section has two strips, use

D = 0

$$E = -\frac{2w_k}{w_{k+1} + w_k} \tag{L.6}$$

$$F = -E$$

for the first strip, and

$$D = \frac{2w_k}{w_k + w_{k-1}}$$

$$E = -D$$

$$F = 0$$
(L.7)

for the second strip.

## APPENDIX M CONVERGENCE ACCELERATION SCHEME

After each iteration, a convergence acceleration procedure is invoked in which a new solution is defined in terms of a linear combination of the previous solutions. This appendix will give the details of the calculation of the required linear combination.

Let  $x^0$ ,  $x^1$ , ...  $x^k$  and RES<sup>0</sup>, RES<sup>1</sup>, ... RES<sup>k</sup> be k+1 successive approximations, and their corresponding residual vectors. Since there are N+L unknowns to be solved for, we define the (N+L) x (k+1) matrix whose columns are the solution vectors

$$[x] = [x^0, x^1, ... x^k]$$
 (M.1)

Similarly, define the residual matrix

1

$$[RES] = [RES^0, RES^1, RES^2, ... RES^k]$$
 (M.2)

Define the "linear combination vector"

such that a new approximation X' is given by the matrix product

$$X' = [X] \begin{bmatrix} f_0 \\ \vdots \\ f_k \end{bmatrix}$$
 (M.3)

and the corresponding residual is

RES' = [RES] 
$$\begin{bmatrix} f_0 \\ \vdots \\ f_k \end{bmatrix}$$
 (M.4)

Note that we can write

$$= R - A[X] \begin{bmatrix} f_0 \\ \vdots \\ f_k \end{bmatrix}$$

$$= R(1 - \sum_{i=0}^{k} f_i) + [(R - AX^0), (R - AX^1), ... (R - AX^1)] \begin{bmatrix} f_0 \\ \vdots \\ f_k \end{bmatrix}$$

$$= R(1 - \sum_{i=0}^{k} f_i) + [RES^0, RES^1, \dots RES^k]$$

$$f_0$$

$$\vdots$$

$$f_k$$
(M.5)

Therefore, by choosing

$$f_k = (i - \sum_{j=0}^{k-1} f_j)$$
 (M.6)

the first term will disappear, and a new residual is given by

Define  $(k+1) \times (k+1)$  "modified" unit matrix I<sub>1</sub> by

from which the linear combination vector can be written:

$$\begin{bmatrix} f_0 \\ \vdots \\ f_k \end{bmatrix} = I_1 \begin{bmatrix} f_0 \\ \vdots \\ f_{k-1} \\ 1 \end{bmatrix} = I_1 \begin{bmatrix} F \\ 1 \end{bmatrix}$$
(M.9)

where F is the (k x 1) vector

$$F = \begin{bmatrix} f_0 \\ \vdots \\ f_{k-1} \end{bmatrix}$$

The new residual vector RES' can now be written as a matrix product involving the old residual matrix and the unknown vector F in the form (using Eq. (M.4))

$$RES' = [RES][I_1] \begin{bmatrix} F \\ 1 \end{bmatrix}$$
 (M.10)

Define the norm of this vector, ||RES'|| by

$$||RES'||^2 = RES' \cdot RES'$$

$$= [F^T 1] [I_1]^T [RES]^T [RES] [I_1] [F] (M.11)$$

The right-hand side of this equation is a quadratic non-negative (scalar) function of the k unknowns  $f_0$ ,  $f_1$  ...  $f_{k-1}$ . The minimum value must therefore occur at the point at which

$$\frac{\partial}{\partial f_i} ||RES'||^2 = 0$$
 for  $i = 0, \dots k-1$ .

This will therefore provide k linear equations which can be solved to minimize Eq. (M.11).

#### Calculation of Partial Derivatives of | | RES' | | | 2

First define the symmetric matrix P by

$$P = [RES]^{T} [RES]$$

$$P = [P_{i,i}], \text{ where } P_{i,i} = RES^{i} \cdot RES^{j}$$
(M.12)

(scalar product of  $i^{th}$  and  $j^{th}$  residual vectors). Now partition the matrix P in the following manner:

$$P = \begin{bmatrix} P_{11} & P_{12} \\ (kxk) & (kx1) \\ P_{12}^{T} & P_{22} \\ (1xk) & (1x1) \end{bmatrix}$$
 (M.13)

so that  $P_{11}$  = scalar products between all of the residuals RES<sup>0</sup> ... RES<sup>k-1</sup>, while  $P_{12}$  consists of scalar products between latest residual RES<sup>k</sup>, and all of earlier residuals, RES<sup>0</sup> ... RES<sup>k-1</sup>, and  $P_{22}$  is scalar ||RES<sup>k</sup>||<sup>2</sup>.

Next define the symmetric matrix Q by

$$Q = [I_1]^T [P] [I^i],$$
 (M.14)

and again partition the matrix Q to separate the last row and column:

i.e.

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ (kxk) & (kx1) \\ Q_{12}^T & Q_{22} \\ (1xk) & (1x1) \end{bmatrix} = \begin{bmatrix} & -1 \\ I & \vdots \\ & -1 \\ [0...0] & 1 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ & & \\ P_{12}^T & P_{22} \end{bmatrix} \begin{bmatrix} & 0 \\ I & \vdots \\ & & 0 \\ [-1...-1] & 1 \end{bmatrix} (M.15)$$

Straightforward matrix multiplication can show that:

$$Q_{11} = P_{11} + P_{12}[-1]^{T} + [-1]P_{12}^{T} + P_{22}[-1][-1]^{T}$$
or
$$Q_{11_{ij}} = P_{11_{ij}} - P_{12_{i}} - P_{12_{j}} + P_{22}$$
(M.16)

and

or

$$q_{12} = p_{12} + p_{22}[-1]$$

$$q_{12_{i}} = p_{12_{i}} - p_{22}$$
(M.17)

and  $Q_{22} = P_{22}$ 

Eq. (M.11) now can be written

and partial differentiation of this expression with respect to  $f_0$ ,  $f_1$ , ...  $f_{k-1}$  provides a set of k linear equations:

$$Q_{11}F + Q_{12} = 0$$

$$Q_{11}F = -Q_{12}$$
(M.19)

the solution of which provides the unknown k acceleration coefficients.

Given this solution, we can define the acceleration vector

or

$$F' = \begin{bmatrix} f_0 \\ \vdots \\ f_{k-1} \\ 1 - f_0 \dots - f_{k-1} \end{bmatrix}$$
 (M.20)

from which the new solution  $X^{\bullet}$  is given by

# APPENDIX N THE COMPRESSIBILITY CORRECTION

The user inputs the average incompressible velocity  $\overline{V}_i$ , which should correspond to physical conditions in the region of interest. If  $\overline{V}_i > a_*^i$ ,  $\overline{V}_i$  is set equal to  $a_*^i$  and the average density ratio  $\epsilon$  is

$$\varepsilon = \frac{\overline{\rho}}{\rho_t} = 0.6339 \tag{N.1}$$

If this occurs the point is labeled "choked" on the output.

If  $V_i < a_*'$ , it is used as it stands to compute  $(\rho/\rho_t)$  by an iterative procedure. The iterative equation is

$$\varepsilon = \left[1 - \frac{1}{5} \left(\frac{i}{a_t}\right)^2 \frac{1}{\varepsilon^2}\right] \tag{N.2}$$

with initial value  $\varepsilon = 1$ .

Finally, the compressible velocity magnitude V is calculated from

$$V = V_{\dot{1}}^{i} \left(\frac{1}{\epsilon}\right)^{m}, \qquad m = \frac{V_{\dot{1}}^{i}}{V_{\dot{1}}}$$
 (N.3)

where  $V_i$  is the magnitude o. the local equivalent incompressible velocity (Section 3.3). The direction of local velocity is not changed.

It will be seen in Appendix 0, Eq. (0.20), that an equivalent incompressible average velocity  $V_C^{'}$  is computed at the control station. For compatibility at the control station, the input should insure that

$$\nabla_{i} = V_{C}^{i} \tag{N.4}$$

or the computed surface Mach number will not agree with that input for the control station. (This is also the default.) This seemingly contradictory flexibility is allowed to improve results if the region of interest is far from the control station..

### APPENDIX O OPTIONS OF THE COMBINATION PROGRAM

#### 0.1 Incompressible Option

If the flow is incompressible, this option is selected and only the following quantities are input:

- $V_{\infty}$  freestream velocity
- V average velocity at the control station
- y reference velocity used in computing pressure coefficient
- α angle of attack
- β angle of yaw

#### 0.2 Freestream Conditions

For compressible flow the freestream conditions are defined by inputting angle of attack  $\alpha$ , angle of yaw  $\beta$ , and three additional quantities:

either velocity  $V_{\infty}$  or Mach number  $M_{\infty}$  either total pressure  $P_t$  or static pressure  $P_s$  either total temperature  $T_t$  or static temperature  $T_s$ 

Then the preliminary calculations are as follows:

- 0.2.1 Mg Input
- (a) If  $P_t$  is input,  $P_s$  is given by

$$P_{s} = P_{t} (1 + \frac{1}{5} M_{\infty}^{2})^{-3/5}$$
 (0.1)

If  $P_S$  is input,  $P_t$  is given by

$$P_{t} = P_{s} (1 + \frac{1}{5} M_{\infty}^{2})^{3/5}$$
 (0.2)

If neither is input, the default is

$$P_{t} = 2116.23$$
 (0.3)

and  $P_S$  is as above.

(b) If  $T_t$  is input,  $T_s$  is given by

$$T_{s} = T_{t} (1 + \frac{1}{5} M_{\infty}^{2})^{-1}$$
 (0.4)

If  $T_s$  is input,  $T_t$  is given by

$$T_{t} = T_{s}(1 + \frac{1}{5} H_{\infty}^{2}) \tag{0.5}$$

If neither is input, the default is

$$T_{t} = 518.67$$
 (0.6)

and  $T_S$  is as above.

In either case stagnation and freestream sound speeds  $a_{\mbox{\scriptsize t}}$  and  $a_{\mbox{\scriptsize s}}$  are calculated from

$$a_t = 49 \sqrt{T_t}$$
,  $a_s = 49 \sqrt{T_s}$  (0.7)

and  $V_{\infty}$  from

$$V_{\infty} = a_{t} M_{\infty} \left( 1 + \frac{1}{5} M_{\infty}^{2} \right)^{-1/2}$$
 (0.8)

0.2.2  $V_{\infty}$  Input

(a) If  $T_t$  is input,  $a_t$  is given by

$$a_{t} = 49 \sqrt{T_{t}}$$
 (0.9)

 $M_{\infty}$  is then calculated from

$$M_{\infty} = \frac{V_{\infty}}{a_{t}} \left[ 1 - \frac{1}{5} \left( \frac{V_{\infty}}{a_{t}} \right)^{2} \right]$$
 (0.10)

The remainder of the calculation proceeds as in 0.2.1 above.

(b) If  $T_S$  is input,  $a_S$  is given by

$$a_s = 49 \sqrt{T_s}$$
 (0.11)

and Mo by

$$M_{\infty} = V_{\infty}/a_{s} \qquad (0.12)$$

The remainder of the calculation proceeds as in 0.2.1 above.

#### 0.2.3 Additional Freestream Quantities

Built into the program are constants

$$g = 32.174$$

$$R = 1715.63$$

The following quantities are calculated:

Total density:

$$\rho_{t} = \frac{P_{t}}{RT_{t}}$$

Static density:

$$\rho_{S} = \frac{P_{S}}{RT_{S}}$$

(0.13)

Dynamic pressure:

$$q_{\infty} = 0.7P_t \left(\frac{P_s}{P_t}\right) M_{\infty}^2$$

Pressure ratio:

Density ratio:

Temperature/sea-level ratio:

$$\theta = \frac{T_{t}}{518.67}$$

Pressure/sea-level ratio:

$$\delta = \frac{P_t}{2116.23}$$

Critical speed:

$$a_{\star} = a_{t}/\sqrt{1.2}$$

Maximum velocity:

$$v_{\text{max}} = \sqrt{5} a_{\text{t}}$$

Equivalent incompressible freestream velocity:  $V_{\infty}^{1} = V_{\infty}^{1} (\frac{\rho_{s}}{\rho_{t}})$ 

Equivalent incompressible critical velocity:  $a_*' = 0.6339a_*$ .

#### 0.2.4 Summary

Three freestream conditions are input:  $V_{\infty}$  or  $M_{\infty}$ ,  $P_{t}$  or  $P_{s}$ ,  $T_{t}$  or  $T_{s}$  (or default values). Calculated and saved are

$$V_{\infty}, M_{\infty}, P_{t}, P_{s}, T_{t}, T_{s}, a_{t}, a_{s}$$

$$\rho_{t}, \rho_{s}, q_{\infty}, P_{s}/P_{t}, \rho_{s}/\rho_{t}, \theta, \delta$$

$$a_{\star}, V_{max}, V_{\omega}, a_{\star}$$
(0.14)

Nineteen quantities all together.

#### 0.3 Control Station Conditions

Input consists of one of the following three quantities:

- w inlet mass flow rate
- V<sub>c</sub> average velocity
- M average Mach number

The remaining two must be calculated plus some additional quantities.

0.3.1 V<sub>c</sub> Input

 $\rho_{_{\mbox{\scriptsize C}}}$  is given by

$$\rho_{c} = \rho_{t} \left[ 1 - \frac{1}{5} \left( \frac{V_{c}}{a_{t}} \right)^{2} \right]$$
 (0.15)

w by

$$\dot{w} = g \rho_c V_c \frac{A_{FP}(k)}{144}$$
 (0.16)

and  $M_C$  by

$$M_{c} = \frac{V_{c}}{a_{t}} \left[ 1 - \frac{1}{5} \left( \frac{V_{c}}{a_{t}} \right)^{2} \right]$$
 (0.17)

0.3.2 Mc Input

V<sub>C</sub> is given by

$$V_c = a_t M_c \left(1 + \frac{1}{5} M_c^2\right)^{-1/2}$$
 (0.18)

Then  $\rho_C$  and  $\hat{\mathbf{w}}$  are obtained as in 0.3.1 above.

0.3.3 w Input

Here  $V_C$  must be calculated iteratively by solving the equation

$$V_{c} = \frac{\hat{w}}{g(A_{FP}(k)/144)\rho_{t} [1 - 1/2(V_{c}/a_{t})^{2}]^{2.5}}$$
(0.19)

starting with  $V_c = 0$ .

Once  $V_{_{\mbox{\scriptsize C}}}$  is known,  $M_{_{\mbox{\scriptsize C}}}$  and  $\rho_{_{\mbox{\scriptsize C}}}$  are obtained as in 0.3.1 above.

#### 0.3.4 Additional Control Station Quantities.

These are calculated as follows:

Pressure ratio:

$$(P_c/P_t) = [1 - \frac{1}{5} (\frac{V_c}{a_t})^2]^{3.5}$$

Density ratio:

$$\rho_{\rm c}/\rho_{\rm t}$$

Dynamic pressure:

$$q_c = 0.7P_t \left(\frac{P_c}{P_t}\right) M_c^2$$

Velocity ratio:

Corrected mass flow:

$$\dot{\mathbf{w}}_{cor} = \dot{\mathbf{w}} \frac{\sqrt{\theta}}{\delta}$$

Equivalent incompressible average velocity:  $V_c^i = V_c \left(\frac{\rho_c}{\rho_+}\right)$ 

$$V_c = V_c \left(\frac{\rho_c}{\rho_t}\right)$$

(0.20)

#### 0.3.5 Summary

One quantity,  $\hat{\mathbf{w}},~\mathbf{V}_{\mathbf{C}},~\text{or}~\mathbf{M}_{\mathbf{C}}$  is input. Quantities saved are

$$\dot{w}$$
,  $V_c$ ,  $M_c$ ,  $\rho_c$ ,  $(P_c/P_t)$ ,  $(\rho_c/\rho_t)$ ,  $q_c$ ,  $(V_c/V_c)$ ,  $\dot{w}_{cor}$ ,  $V_c'$  (0.21)

a total of ten quantities.

## APPENDIX P ORGANIZATION OF THE INPUT POINTS

The input to this program consists of the coordinates of a number of points. These points define the surface of the three-dimensional inlet around which the flow is to be computed. For the purpose of organizing these points for computation, each point is assigned a pair of integers, m and n. These integers need not be input, but their use must be understood to insure the correctness of the input and to facilitate the interpretation of the output.

For each point, n identifies the "column" of points to which it belongs, while m identifies its position in the "column," i.e, the "row." The first point of a "column" always has m = 1. To insure that the program will compute outward normal vectors, the following condition must be satisfied by the input points. If an observer is located in the flow and is oriented so that locally he sees points on the surface with m values increasing upward, he must also see n values increasing toward the right. Examples of correct and incorrect input are shown in Fig. 34(a). In this figure the flowfield lies about the paper, while the interior of the body lies below the paper. Occasionally, it happens that despite all care a body is input incorrectly. If the entire body is input incorrectly - not some sections correctly and some incorrectly - the difficulty can be remedied by changing the sign of one coordinate of all the input points. This trick will give a correctly input body of the proper shape at perhaps a peculiar location. Otherwise, the input will have to be done over. If the inlet is input correctly (Step 2), but a cross-section (Step 4) is input so that its normal vector points upstream, the combined flow will be correct, but the flux at the cross section will be negative. Clearly a control station with the wrong normal vector invalidates the calculation (Step 4).

The body surface is imagined divided into sections, which may be actual physical divisions or may be selected for convenience. A section is defined as consisting of a group of at least two n-lines. Within each section the n-lines are input in order to increasing n. On each n-line the points are input in order of increasing m. All n-lines in a section must have the same number of points, but this may vary from section to section. The first n-line of the first section is n = 1. From then on the n-lines may be thought of as numbered

P-1

2274H

(· - <sup>2</sup>)

the beginning of each section. Elements will be formed that are associated with points on every n-line except those that are last in their respective sections. Points on these latter n-lines are used only to form elements associated with points on the next lowest n-lines.

To illustrate this procedure, consider the plan view of a body shown in Fig. 34(b). This body has been divided into four sections, as shown in the figure. The first section contains four n-lines, n=1, 2, 3, 4; the second, five n-lines, n=5, 6, 7, 8, 9; the third three n-lines, n=10, 11, 12; and the fourth three n-lines; n=13, 14, 15. The number of points on each n-line are:

Section = 1 2 3 4 M = 4 7 4 2

Notice that the line n=4 has only four points, the points m=1, 2, 3, 4 and the m-grid of Section 1, which is listed in the figure along the n=1 line. The lines n=4 and n=5 are physically identical. Some of the points on the two lines are physically identical but correspond to different values of m. This is of no consequence. In this scheme sections are completely independent. No elements are computed corresponding to points on lines n=4, 9, 12, 15.

There is no restriction that the m and n lines of different sections have to be roughly parallel. The arrangement shown in Fig. 34(c) is permissible.

| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Government Accession No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Recipient's Catalog No.                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASA CR-174975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Report Date June: 1985                                                                                                                                                                                        |
| CALCULATION OF COMPRESSIBLE FLOW ABOUT THREE-DIMENSIONAL INLETS WITH AUXILIARY INLETS, SLATS AND VANES BY MEANS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAL                                                                                                                                                                                                              |
| PANEL METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. Periarming Organization Report No.                                                                                                                                                                            |
| . Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MDC J3789                                                                                                                                                                                                        |
| .L. Hess, D. M. Fried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | man and R. W. Clark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. Work Unit No.                                                                                                                                                                                                |
| ). Performing Organization Name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |
| ouglas Aircraft Compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11. Contract or Grant No.                                                                                                                                                                                        |
| innannall Douglas Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NAS3-22250                                                                                                                                                                                                       |
| 3855 Lakewood Blvd., L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ong Beach, CA 90045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13. Type of Report and Period Covered Final Contractor Repor                                                                                                                                                     |
| 2. Sponsoring Agency Name and Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/17/83 - 8/15/85                                                                                                                                                                                                |
| ewis Research Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd Space Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14. Sponsor. Agency Code                                                                                                                                                                                         |
| Cleveland, Chio 44135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| 5. Supplementary Notes<br>Final Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ny P. Hwang, Propulsion Aerodyna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IMICS Division                                                                                                                                                                                                   |
| NAS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Lewis Research Center, Clevela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ind, UH 44135                                                                                                                                                                                                    |
| and about complex ini<br>panel method, a techn<br>operating condition,<br>solving large full sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -oriented method has been constructed configurations. Efficiency ique of superposition for obtain and employment of an advanced mostems of equations, including the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the                                                                                                                         |
| and about complex initional panel method, a techn operating condition, solving large full sy Kutta condition. Use graphical output options the flowfield than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | et configurations. Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel                                                                                              |
| and about complex initional panel method, a techn operating condition, solving large full sy Kutta condition. Use graphical output options the flowfield than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ique of superposition for obtainment of an advanced makes of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel                                                                                              |
| and about complex initional panel method, a techn operating condition, solving large full sy Kutta condition. Use graphical output options the flowfield than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ique of superposition for obtainant employment of an advanced markets of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously.  Simplicated configurations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are                                 |
| and about complex initional method, a technoperating condition, solving large full sy Kutta condition. Use graphical output option the flowfield than presented for some conditions are conditionally to the flow of the flow  | ique of superposition for obtain and employment of an advanced markers of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  Together the configuration of the configur | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are                                 |
| and about complex inipanel method, a techn operating condition, solving large full sy Kutta condition. Use graphical output opti of the flowfield than presented for some conditions are conditionally as a solution of the flowfield than presented for some conditions.  17. Key Words (Suggested by Auth Aerodynamics Auxiliary Inlets)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ique of superposition for obtain and employment of an advanced market stems of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  Torish Graphical Display Inlets Unclass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are                                 |
| and about complex initial panel method, a technoperating condition, solving large full sy Kutta condition. Use graphical output option the flowfield than presented for some conditions are conditions.  17. Key Words (Suggested by Auth Aerodynamics Auxiliary Inlets Compressible Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ique of superposition for obtain and employment of an advanced markers of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  Together the configuration of the configur | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are                                 |
| and about complex initional method, a technoperating condition, solving large full sy Kutta condition. Use graphical output option the flowfield than presented for some control of the flowfield than presented flowfield flo | ique of superposition for obtain and employment of an advanced market stems of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that, taken together, yield had been possible previously. Implicated configurations.  **Torist Concerns are addressed by the ons that the ons the o | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are sified - Distribution Unlimited |
| and about complex initial panel method, a technoperating condition, solving large full sy Kutta condition. Use graphical output option the flowfield than presented for some conditions are conditions.  17. Key Words (Suggested by Auth Aerodynamics Auxiliary Inlets Compressible Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ique of superposition for obtain and employment of an advanced mistems of equations, including the concerns are addressed by the ons that, taken together, yield had been possible previously. In it is a panel Method Potential Flow Lifting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ning solutions at any inlet atrix-iteration technique for he nonlinear equations for the provision of several novel a more complete comprehension Examples of these features are                                 |

# END

# DATE

# FILMED

NOV 19 1985